serenity/Userland/test-crypto.cpp
AnotherTest bc7a149039 LibCrypto+LibTLS+Kernel: Switch the Cipher::Mode interface to use Span
This shaves 2.5 more runtime seconds off 'disasm /bin/id', and makes the
Mode<T> interface a lot more allocation-friendly.
2020-08-11 21:37:10 +02:00

2266 lines
81 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Random.h>
#include <LibCore/ArgsParser.h>
#include <LibCore/EventLoop.h>
#include <LibCore/File.h>
#include <LibCrypto/Authentication/HMAC.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibCrypto/BigInt/UnsignedBigInteger.h>
#include <LibCrypto/Checksum/Adler32.h>
#include <LibCrypto/Checksum/CRC32.h>
#include <LibCrypto/Cipher/AES.h>
#include <LibCrypto/Hash/MD5.h>
#include <LibCrypto/Hash/SHA1.h>
#include <LibCrypto/Hash/SHA2.h>
#include <LibCrypto/PK/RSA.h>
#include <LibLine/Editor.h>
#include <LibTLS/TLSv12.h>
#include <limits.h>
#include <stdio.h>
#include <time.h>
static const char* secret_key = "WellHelloFreinds";
static const char* suite = nullptr;
static const char* filename = nullptr;
static const char* server = nullptr;
static int key_bits = 128;
static bool binary = false;
static bool interactive = false;
static bool run_tests = false;
static int port = 443;
static bool in_ci = false;
static struct timeval start_time {
0, 0
};
static struct timezone tz;
static bool g_some_test_failed = false;
static bool encrypting = true;
constexpr const char* DEFAULT_DIGEST_SUITE { "HMAC-SHA256" };
constexpr const char* DEFAULT_CHECKSUM_SUITE { "CRC32" };
constexpr const char* DEFAULT_HASH_SUITE { "SHA256" };
constexpr const char* DEFAULT_CIPHER_SUITE { "AES_CBC" };
constexpr const char* DEFAULT_SERVER { "www.google.com" };
// listAllTests
// Cipher
int aes_cbc_tests();
int aes_ctr_tests();
// Hash
int md5_tests();
int sha1_tests();
int sha256_tests();
int sha512_tests();
// Authentication
int hmac_md5_tests();
int hmac_sha256_tests();
int hmac_sha512_tests();
// Public-Key
int rsa_tests();
// TLS
int tls_tests();
// Big Integer
int bigint_tests();
// Checksum
int adler32_tests();
int crc32_tests();
// stop listing tests
void print_buffer(const ReadonlyBytes& buffer, int split)
{
for (size_t i = 0; i < buffer.size(); ++i) {
if (split > 0) {
if (i % split == 0 && i) {
printf(" ");
for (size_t j = i - split; j < i; ++j) {
auto ch = buffer[j];
printf("%c", ch >= 32 && ch <= 127 ? ch : '.'); // silly hack
}
puts("");
}
}
printf("%02x ", buffer[i]);
}
puts("");
}
Core::EventLoop loop;
int run(Function<void(const char*, size_t)> fn)
{
if (interactive) {
auto editor = Line::Editor::construct();
editor->initialize();
for (;;) {
auto line_result = editor->get_line("> ");
if (line_result.is_error())
break;
auto& line = line_result.value();
if (line == ".wait") {
loop.exec();
} else {
fn(line.characters(), line.length());
loop.pump();
}
}
} else {
if (filename == nullptr) {
puts("must specify a file name");
return 1;
}
if (!Core::File::exists(filename)) {
puts("File does not exist");
return 1;
}
auto file = Core::File::open(filename, Core::IODevice::OpenMode::ReadOnly);
if (file.is_error()) {
printf("That's a weird file man...\n");
return 1;
}
auto buffer = file.value()->read_all();
fn((const char*)buffer.data(), buffer.size());
loop.exec();
}
return 0;
}
void tls(const char* message, size_t len)
{
static RefPtr<TLS::TLSv12> tls;
static ByteBuffer write {};
if (!tls) {
tls = TLS::TLSv12::construct(nullptr);
tls->connect(server ?: DEFAULT_SERVER, port);
tls->on_tls_ready_to_read = [](auto& tls) {
auto buffer = tls.read();
if (buffer.has_value())
fprintf(stdout, "%.*s", (int)buffer.value().size(), buffer.value().data());
};
tls->on_tls_ready_to_write = [&](auto&) {
if (write.size()) {
tls->write(write);
write.clear();
}
};
tls->on_tls_error = [&](auto) {
loop.quit(1);
};
tls->on_tls_finished = [&]() {
loop.quit(0);
};
}
write.append(message, len);
write.append("\r\n", 2);
}
void aes_cbc(const char* message, size_t len)
{
auto buffer = ByteBuffer::wrap(const_cast<char*>(message), len);
// FIXME: Take iv as an optional parameter
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
if (encrypting) {
Crypto::Cipher::AESCipher::CBCMode cipher(
ByteBuffer::wrap(const_cast<char*>(secret_key), strlen(secret_key)),
key_bits,
Crypto::Cipher::Intent::Encryption);
auto enc = cipher.create_aligned_buffer(buffer.size());
auto enc_span = enc.span();
cipher.encrypt(buffer.span(), enc_span, iv.span());
if (binary)
printf("%.*s", (int)enc_span.size(), enc_span.data());
else
print_buffer(enc_span, Crypto::Cipher::AESCipher::block_size());
} else {
Crypto::Cipher::AESCipher::CBCMode cipher(
ByteBuffer::wrap(const_cast<char*>(secret_key), strlen(secret_key)),
key_bits,
Crypto::Cipher::Intent::Decryption);
auto dec = cipher.create_aligned_buffer(buffer.size());
auto dec_span = dec.span();
cipher.decrypt(buffer.span(), dec_span, iv.span());
printf("%.*s\n", (int)dec_span.size(), dec_span.data());
}
}
void adler32(const char* message, size_t len)
{
auto checksum = Crypto::Checksum::Adler32({ (const u8*)message, len });
printf("%#10X\n", checksum.digest());
}
void crc32(const char* message, size_t len)
{
auto checksum = Crypto::Checksum::CRC32({ (const u8*)message, len });
printf("%#10X\n", checksum.digest());
}
void md5(const char* message, size_t len)
{
auto digest = Crypto::Hash::MD5::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::MD5::digest_size(), digest.data);
else
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
}
void hmac_md5(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.digest_size(), mac.data);
else
print_buffer({ mac.data, hmac.digest_size() }, -1);
}
void sha1(const char* message, size_t len)
{
auto digest = Crypto::Hash::SHA1::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::SHA1::digest_size(), digest.data);
else
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
}
void sha256(const char* message, size_t len)
{
auto digest = Crypto::Hash::SHA256::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::SHA256::digest_size(), digest.data);
else
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
}
void hmac_sha256(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.digest_size(), mac.data);
else
print_buffer({ mac.data, hmac.digest_size() }, -1);
}
void sha512(const char* message, size_t len)
{
auto digest = Crypto::Hash::SHA512::hash((const u8*)message, len);
if (binary)
printf("%.*s", (int)Crypto::Hash::SHA512::digest_size(), digest.data);
else
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
}
void hmac_sha512(const char* message, size_t len)
{
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac(secret_key);
auto mac = hmac.process((const u8*)message, len);
if (binary)
printf("%.*s", (int)hmac.digest_size(), mac.data);
else
print_buffer({ mac.data, hmac.digest_size() }, -1);
}
auto main(int argc, char** argv) -> int
{
const char* mode = nullptr;
Core::ArgsParser parser;
parser.add_positional_argument(mode, "mode to operate in ('list' to see modes and descriptions)", "mode");
parser.add_option(secret_key, "Set the secret key (default key is 'WellHelloFriends')", "secret-key", 'k', "secret key");
parser.add_option(key_bits, "Size of the key", "key-bits", 'b', "key-bits");
parser.add_option(filename, "Read from file", "file", 'f', "from file");
parser.add_option(binary, "Force binary output", "force-binary", 0);
parser.add_option(interactive, "REPL mode", "interactive", 'i');
parser.add_option(run_tests, "Run tests for the specified suite", "tests", 't');
parser.add_option(suite, "Set the suite used", "suite-name", 'n', "suite name");
parser.add_option(server, "Set the server to talk to (only for `tls')", "server-address", 's', "server-address");
parser.add_option(port, "Set the port to talk to (only for `tls')", "port", 'p', "port");
parser.add_option(in_ci, "CI Test mode", "ci-mode", 'c');
parser.parse(argc, argv);
StringView mode_sv { mode };
if (mode_sv == "list") {
puts("test-crypto modes");
puts("\tdigest - Access digest (authentication) functions");
puts("\thash - Access hash functions");
puts("\tchecksum - Access checksum functions");
puts("\tencrypt -- Access encryption functions");
puts("\tdecrypt -- Access decryption functions");
puts("\ttls -- Connect to a peer over TLS 1.2");
puts("\tlist -- List all known modes");
puts("these modes only contain tests");
puts("\ttest -- Run every test suite");
puts("\tbigint -- Run big integer test suite");
puts("\tpk -- Run Public-key system tests");
return 0;
}
if (mode_sv == "hash") {
if (suite == nullptr)
suite = DEFAULT_HASH_SUITE;
StringView suite_sv { suite };
if (suite_sv == "MD5") {
if (run_tests)
return md5_tests();
return run(md5);
}
if (suite_sv == "SHA1") {
if (run_tests)
return sha1_tests();
return run(sha1);
}
if (suite_sv == "SHA256") {
if (run_tests)
return sha256_tests();
return run(sha256);
}
if (suite_sv == "SHA512") {
if (run_tests)
return sha512_tests();
return run(sha512);
}
printf("unknown hash function '%s'\n", suite);
return 1;
}
if (mode_sv == "checksum") {
if (suite == nullptr)
suite = DEFAULT_CHECKSUM_SUITE;
StringView suite_sv { suite };
if (suite_sv == "CRC32") {
if (run_tests)
return crc32_tests();
return run(crc32);
}
if (suite_sv == "Adler32") {
if (run_tests)
return adler32_tests();
return run(adler32);
}
printf("unknown checksum function '%s'\n", suite);
return 1;
}
if (mode_sv == "digest") {
if (suite == nullptr)
suite = DEFAULT_DIGEST_SUITE;
StringView suite_sv { suite };
if (suite_sv == "HMAC-MD5") {
if (run_tests)
return hmac_md5_tests();
return run(hmac_md5);
}
if (suite_sv == "HMAC-SHA256") {
if (run_tests)
return hmac_sha256_tests();
return run(hmac_sha256);
}
if (suite_sv == "HMAC-SHA512") {
if (run_tests)
return hmac_sha512_tests();
return run(hmac_sha512);
}
printf("unknown hash function '%s'\n", suite);
return 1;
}
if (mode_sv == "pk") {
return rsa_tests();
}
if (mode_sv == "bigint") {
return bigint_tests();
}
if (mode_sv == "tls") {
if (run_tests)
return tls_tests();
return run(tls);
}
if (mode_sv == "test") {
encrypting = true;
aes_cbc_tests();
aes_ctr_tests();
encrypting = false;
aes_cbc_tests();
aes_ctr_tests();
md5_tests();
sha1_tests();
sha256_tests();
sha512_tests();
hmac_md5_tests();
hmac_sha256_tests();
hmac_sha512_tests();
rsa_tests();
if (!in_ci) {
// Do not run these in CI to avoid tests with variables outside our control.
tls_tests();
}
bigint_tests();
return g_some_test_failed ? 1 : 0;
}
encrypting = mode_sv == "encrypt";
if (encrypting || mode_sv == "decrypt") {
if (suite == nullptr)
suite = DEFAULT_CIPHER_SUITE;
StringView suite_sv { suite };
if (StringView(suite) == "AES_CBC") {
if (run_tests)
return aes_cbc_tests();
if (!Crypto::Cipher::AESCipher::KeyType::is_valid_key_size(key_bits)) {
printf("Invalid key size for AES: %d\n", key_bits);
return 1;
}
if (strlen(secret_key) != (size_t)key_bits / 8) {
printf("Key must be exactly %d bytes long\n", key_bits / 8);
return 1;
}
return run(aes_cbc);
} else {
printf("Unknown cipher suite '%s'\n", suite);
return 1;
}
}
printf("Unknown mode '%s', check out the list of modes\n", mode);
return 1;
}
#define I_TEST(thing) \
{ \
printf("Testing " #thing "... "); \
fflush(stdout); \
gettimeofday(&start_time, &tz); \
}
#define PASS \
{ \
struct timeval end_time { \
0, 0 \
}; \
gettimeofday(&end_time, &tz); \
time_t interval_s = end_time.tv_sec - start_time.tv_sec; \
suseconds_t interval_us = end_time.tv_usec; \
if (interval_us < start_time.tv_usec) { \
interval_s -= 1; \
interval_us += 1000000; \
} \
interval_us -= start_time.tv_usec; \
printf("PASS %llds %lldus\n", (long long)interval_s, (long long)interval_us); \
}
#define FAIL(reason) \
do { \
printf("FAIL: " #reason "\n"); \
g_some_test_failed = true; \
} while (0)
ByteBuffer operator""_b(const char* string, size_t length)
{
dbg() << "Create byte buffer of size " << length;
return ByteBuffer::copy(string, length);
}
// tests go after here
// please be reasonable with orders kthx
void aes_cbc_test_name();
void aes_cbc_test_encrypt();
void aes_cbc_test_decrypt();
void aes_ctr_test_name();
void aes_ctr_test_encrypt();
void aes_ctr_test_decrypt();
void md5_test_name();
void md5_test_hash();
void md5_test_consecutive_updates();
void sha1_test_name();
void sha1_test_hash();
void sha256_test_name();
void sha256_test_hash();
void sha512_test_name();
void sha512_test_hash();
void hmac_md5_test_name();
void hmac_md5_test_process();
void hmac_sha256_test_name();
void hmac_sha256_test_process();
void hmac_sha512_test_name();
void hmac_sha512_test_process();
void rsa_test_encrypt();
void rsa_test_der_parse();
void rsa_test_encrypt_decrypt();
void rsa_emsa_pss_test_create();
void bigint_test_number_theory(); // FIXME: we should really move these num theory stuff out
void tls_test_client_hello();
void bigint_test_fibo500();
void bigint_addition_edgecases();
void bigint_subtraction();
void bigint_multiplication();
void bigint_division();
void bigint_base10();
void bigint_import_export();
void bigint_bitwise();
void bigint_test_signed_fibo500();
void bigint_signed_addition_edgecases();
void bigint_signed_subtraction();
void bigint_signed_multiplication();
void bigint_signed_division();
void bigint_signed_base10();
void bigint_signed_import_export();
void bigint_signed_bitwise();
int aes_cbc_tests()
{
aes_cbc_test_name();
if (encrypting) {
aes_cbc_test_encrypt();
} else {
aes_cbc_test_decrypt();
}
return g_some_test_failed ? 1 : 0;
}
void aes_cbc_test_name()
{
I_TEST((AES CBC class name));
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
if (cipher.class_name() != "AES_CBC")
FAIL(Invalid class name);
else
PASS;
}
void aes_cbc_test_encrypt()
{
auto test_it = [](auto& cipher, auto& result) {
auto in = "This is a test! This is another test!"_b;
auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
auto out_span = out.span();
cipher.encrypt(in.span(), out_span, iv.span());
if (out.size() != sizeof(result))
FAIL(size mismatch);
else if (memcmp(out_span.data(), result, out_span.size()) != 0) {
FAIL(invalid data);
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
{
I_TEST((AES CBC with 128 bit key | Encrypt))
u8 result[] {
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
{
I_TEST((AES CBC with 192 bit key | Encrypt))
u8 result[] {
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb
};
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
{
I_TEST((AES CBC with 256 bit key | Encrypt))
u8 result[] {
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
{
I_TEST((AES CBC with 256 bit key | Encrypt with unsigned key))
u8 result[] {
0x18, 0x71, 0x80, 0x4c, 0x28, 0x07, 0x55, 0x3c, 0x05, 0x33, 0x36, 0x3f, 0x19, 0x38, 0x5c,
0xbe, 0xf8, 0xb8, 0x0e, 0x0e, 0x66, 0x67, 0x63, 0x9c, 0xbf, 0x73, 0xcd, 0x82, 0xf9, 0xcb,
0x9d, 0x81, 0x56, 0xc6, 0x75, 0x14, 0x8b, 0x79, 0x60, 0xb0, 0xdf, 0xaa, 0x2c, 0x2b, 0xd4,
0xd6, 0xa0, 0x46
};
u8 key[] { 0x0a, 0x8c, 0x5b, 0x0d, 0x8a, 0x68, 0x43, 0xf7, 0xaf, 0xc0, 0xe3, 0x4e, 0x4b, 0x43, 0xaa, 0x28, 0x69, 0x9b, 0x6f, 0xe7, 0x24, 0x82, 0x1c, 0x71, 0x86, 0xf6, 0x2b, 0x87, 0xd6, 0x8b, 0x8f, 0xf1 };
Crypto::Cipher::AESCipher::CBCMode cipher(ByteBuffer::wrap(key, 32), 256, Crypto::Cipher::Intent::Encryption);
test_it(cipher, result);
}
// TODO: Test non-CMS padding options
}
void aes_cbc_test_decrypt()
{
auto test_it = [](auto& cipher, auto& result, auto result_len) {
auto true_value = "This is a test! This is another test!";
auto in = ByteBuffer::copy(result, result_len);
auto out = cipher.create_aligned_buffer(in.size());
auto iv = ByteBuffer::create_zeroed(Crypto::Cipher::AESCipher::block_size());
auto out_span = out.span();
cipher.decrypt(in.span(), out_span, iv.span());
if (out_span.size() != strlen(true_value)) {
FAIL(size mismatch);
printf("Expected %zu bytes but got %zu\n", strlen(true_value), out_span.size());
} else if (memcmp(out_span.data(), true_value, strlen(true_value)) != 0) {
FAIL(invalid data);
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
{
I_TEST((AES CBC with 128 bit key | Decrypt))
u8 result[] {
0xb8, 0x06, 0x7c, 0xf2, 0xa9, 0x56, 0x63, 0x58, 0x2d, 0x5c, 0xa1, 0x4b, 0xc5, 0xe3, 0x08,
0xcf, 0xb5, 0x93, 0xfb, 0x67, 0xb6, 0xf7, 0xaf, 0x45, 0x34, 0x64, 0x70, 0x9e, 0xc9, 0x1a,
0x8b, 0xd3, 0x70, 0x45, 0xf0, 0x79, 0x65, 0xca, 0xb9, 0x03, 0x88, 0x72, 0x1c, 0xdd, 0xab,
0x45, 0x6b, 0x1c
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
{
I_TEST((AES CBC with 192 bit key | Decrypt))
u8 result[] {
0xae, 0xd2, 0x70, 0xc4, 0x9c, 0xaa, 0x83, 0x33, 0xd3, 0xd3, 0xac, 0x11, 0x65, 0x35, 0xf7,
0x19, 0x48, 0x7c, 0x7a, 0x8a, 0x95, 0x64, 0xe7, 0xc6, 0x0a, 0xdf, 0x10, 0x06, 0xdc, 0x90,
0x68, 0x51, 0x09, 0xd7, 0x3b, 0x48, 0x1b, 0x8a, 0xd3, 0x50, 0x09, 0xba, 0xfc, 0xde, 0x11,
0xe0, 0x3f, 0xcb
};
Crypto::Cipher::AESCipher::CBCMode cipher("Well Hello Friends! whf!"_b, 192, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
{
I_TEST((AES CBC with 256 bit key | Decrypt))
u8 result[] {
0x0a, 0x44, 0x4d, 0x62, 0x9e, 0x8b, 0xd8, 0x11, 0x80, 0x48, 0x2a, 0x32, 0x53, 0x61, 0xe7,
0x59, 0x62, 0x55, 0x9e, 0xf4, 0xe6, 0xad, 0xea, 0xc5, 0x0b, 0xf6, 0xbc, 0x6a, 0xcb, 0x9c,
0x47, 0x9f, 0xc2, 0x21, 0xe6, 0x19, 0x62, 0xc3, 0x75, 0xca, 0xab, 0x2d, 0x18, 0xa1, 0x54,
0xd1, 0x41, 0xe6
};
Crypto::Cipher::AESCipher::CBCMode cipher("WellHelloFriendsWellHelloFriends"_b, 256, Crypto::Cipher::Intent::Decryption);
test_it(cipher, result, 48);
}
// TODO: Test non-CMS padding options
}
int aes_ctr_tests()
{
aes_ctr_test_name();
if (encrypting) {
aes_ctr_test_encrypt();
} else {
aes_ctr_test_decrypt();
}
return g_some_test_failed ? 1 : 0;
}
void aes_ctr_test_name()
{
I_TEST((AES CTR class name));
Crypto::Cipher::AESCipher::CTRMode cipher("WellHelloFriends"_b, 128, Crypto::Cipher::Intent::Encryption);
if (cipher.class_name() != "AES_CTR")
FAIL(Invalid class name);
else
PASS;
}
#define AS_BB(x) (ByteBuffer::wrap((x), sizeof((x)) / sizeof((x)[0])))
void aes_ctr_test_encrypt()
{
auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
// nonce is already included in ivec.
Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Encryption);
ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size());
Bytes out_span = out_actual.span();
cipher.encrypt(in.span(), out_span, ivec.span());
if (out_expected.size() != out_actual.size()) {
FAIL(size mismatch);
printf("Expected %zu bytes but got %zu\n", out_expected.size(), out_span.size());
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
FAIL(invalid data);
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
// From RFC 3686, Section 6
{
// Test Vector #1
I_TEST((AES CTR 16 octets with 128 bit key | Encrypt))
u8 key[] {
0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
};
u8 ivec[] {
0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
};
u8 out[] {
0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #2
I_TEST((AES CTR 32 octets with 128 bit key | Encrypt))
u8 key[] {
0x7e, 0x24, 0x06, 0x78, 0x17, 0xfa, 0xe0, 0xd7, 0x43, 0xd6, 0xce, 0x1f, 0x32, 0x53, 0x91, 0x63
};
u8 ivec[] {
0x00, 0x6c, 0xb6, 0xdb, 0xc0, 0x54, 0x3b, 0x59, 0xda, 0x48, 0xd9, 0x0b, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
u8 out[] {
0x51, 0x04, 0xa1, 0x06, 0x16, 0x8a, 0x72, 0xd9, 0x79, 0x0d, 0x41, 0xee, 0x8e, 0xda, 0xd3, 0x88,
0xeb, 0x2e, 0x1e, 0xfc, 0x46, 0xda, 0x57, 0xc8, 0xfc, 0xe6, 0x30, 0xdf, 0x91, 0x41, 0xbe, 0x28
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #3
I_TEST((AES CTR 36 octets with 128 bit key | Encrypt))
u8 key[] {
0x76, 0x91, 0xbe, 0x03, 0x5e, 0x50, 0x20, 0xa8, 0xac, 0x6e, 0x61, 0x85, 0x29, 0xf9, 0xa0, 0xdc
};
u8 ivec[] {
0x00, 0xe0, 0x01, 0x7b, 0x27, 0x77, 0x7f, 0x3f, 0x4a, 0x17, 0x86, 0xf0, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
};
u8 out[] {
0xc1, 0xcf, 0x48, 0xa8, 0x9f, 0x2f, 0xfd, 0xd9, 0xcf, 0x46, 0x52, 0xe9, 0xef, 0xdb, 0x72, 0xd7, 0x45, 0x40, 0xa4, 0x2b, 0xde, 0x6d, 0x78, 0x36, 0xd5, 0x9a, 0x5c, 0xea, 0xae, 0xf3, 0x10, 0x53, 0x25, 0xb2, 0x07, 0x2f
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #4
I_TEST((AES CTR 16 octets with 192 bit key | Encrypt))
u8 key[] {
0x16, 0xaf, 0x5b, 0x14, 0x5f, 0xc9, 0xf5, 0x79, 0xc1, 0x75, 0xf9, 0x3e, 0x3b, 0xfb, 0x0e, 0xed, 0x86, 0x3d, 0x06, 0xcc, 0xfd, 0xb7, 0x85, 0x15
};
u8 ivec[] {
0x00, 0x00, 0x00, 0x48, 0x36, 0x73, 0x3c, 0x14, 0x7d, 0x6d, 0x93, 0xcb, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
};
u8 out[] {
0x4b, 0x55, 0x38, 0x4f, 0xe2, 0x59, 0xc9, 0xc8, 0x4e, 0x79, 0x35, 0xa0, 0x03, 0xcb, 0xe9, 0x28
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #5
I_TEST((AES CTR 32 octets with 192 bit key | Encrypt))
u8 key[] {
0x7c, 0x5c, 0xb2, 0x40, 0x1b, 0x3d, 0xc3, 0x3c, 0x19, 0xe7, 0x34, 0x08, 0x19, 0xe0, 0xf6, 0x9c, 0x67, 0x8c, 0x3d, 0xb8, 0xe6, 0xf6, 0xa9, 0x1a
};
u8 ivec[] {
0x00, 0x96, 0xb0, 0x3b, 0x02, 0x0c, 0x6e, 0xad, 0xc2, 0xcb, 0x50, 0x0d, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
u8 out[] {
0x45, 0x32, 0x43, 0xfc, 0x60, 0x9b, 0x23, 0x32, 0x7e, 0xdf, 0xaa, 0xfa, 0x71, 0x31, 0xcd, 0x9f, 0x84, 0x90, 0x70, 0x1c, 0x5a, 0xd4, 0xa7, 0x9c, 0xfc, 0x1f, 0xe0, 0xff, 0x42, 0xf4, 0xfb, 0x00
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #6
I_TEST((AES CTR 36 octets with 192 bit key | Encrypt))
u8 key[] {
0x02, 0xbf, 0x39, 0x1e, 0xe8, 0xec, 0xb1, 0x59, 0xb9, 0x59, 0x61, 0x7b, 0x09, 0x65, 0x27, 0x9b, 0xf5, 0x9b, 0x60, 0xa7, 0x86, 0xd3, 0xe0, 0xfe
};
u8 ivec[] {
0x00, 0x07, 0xbd, 0xfd, 0x5c, 0xbd, 0x60, 0x27, 0x8d, 0xcc, 0x09, 0x12, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
};
u8 out[] {
0x96, 0x89, 0x3f, 0xc5, 0x5e, 0x5c, 0x72, 0x2f, 0x54, 0x0b, 0x7d, 0xd1, 0xdd, 0xf7, 0xe7, 0x58, 0xd2, 0x88, 0xbc, 0x95, 0xc6, 0x91, 0x65, 0x88, 0x45, 0x36, 0xc8, 0x11, 0x66, 0x2f, 0x21, 0x88, 0xab, 0xee, 0x09, 0x35
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #7
I_TEST((AES CTR 16 octets with 256 bit key | Encrypt))
u8 key[] {
0x77, 0x6b, 0xef, 0xf2, 0x85, 0x1d, 0xb0, 0x6f, 0x4c, 0x8a, 0x05, 0x42, 0xc8, 0x69, 0x6f, 0x6c, 0x6a, 0x81, 0xaf, 0x1e, 0xec, 0x96, 0xb4, 0xd3, 0x7f, 0xc1, 0xd6, 0x89, 0xe6, 0xc1, 0xc1, 0x04
};
u8 ivec[] {
0x00, 0x00, 0x00, 0x60, 0xdb, 0x56, 0x72, 0xc9, 0x7a, 0xa8, 0xf0, 0xb2, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
};
u8 out[] {
0x14, 0x5a, 0xd0, 0x1d, 0xbf, 0x82, 0x4e, 0xc7, 0x56, 0x08, 0x63, 0xdc, 0x71, 0xe3, 0xe0, 0xc0
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #8
I_TEST((AES CTR 32 octets with 256 bit key | Encrypt))
u8 key[] {
0xf6, 0xd6, 0x6d, 0x6b, 0xd5, 0x2d, 0x59, 0xbb, 0x07, 0x96, 0x36, 0x58, 0x79, 0xef, 0xf8, 0x86, 0xc6, 0x6d, 0xd5, 0x1a, 0x5b, 0x6a, 0x99, 0x74, 0x4b, 0x50, 0x59, 0x0c, 0x87, 0xa2, 0x38, 0x84
};
u8 ivec[] {
0x00, 0xfa, 0xac, 0x24, 0xc1, 0x58, 0x5e, 0xf1, 0x5a, 0x43, 0xd8, 0x75, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
};
u8 out[] {
0xf0, 0x5e, 0x23, 0x1b, 0x38, 0x94, 0x61, 0x2c, 0x49, 0xee, 0x00, 0x0b, 0x80, 0x4e, 0xb2, 0xa9, 0xb8, 0x30, 0x6b, 0x50, 0x8f, 0x83, 0x9d, 0x6a, 0x55, 0x30, 0x83, 0x1d, 0x93, 0x44, 0xaf, 0x1c
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
{
// Test Vector #9
I_TEST((AES CTR 36 octets with 256 bit key | Encrypt))
u8 key[] {
0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
};
u8 ivec[] {
0x00, 0x1c, 0xc5, 0xb7, 0x51, 0xa5, 0x1d, 0x70, 0xa1, 0xc1, 0x11, 0x48, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
};
u8 out[] {
0xeb, 0x6c, 0x52, 0x82, 0x1d, 0x0b, 0xbb, 0xf7, 0xce, 0x75, 0x94, 0x46, 0x2a, 0xca, 0x4f, 0xaa, 0xb4, 0x07, 0xdf, 0x86, 0x65, 0x69, 0xfd, 0x07, 0xf4, 0x8c, 0xc0, 0xb5, 0x83, 0xd6, 0x07, 0x1f, 0x1e, 0xc0, 0xe6, 0xb8
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
// Manual test case
{
// This test checks whether counter overflow crashes.
I_TEST((AES CTR 36 octets with 256 bit key, high counter | Encrypt))
u8 key[] {
0xff, 0x7a, 0x61, 0x7c, 0xe6, 0x91, 0x48, 0xe4, 0xf1, 0x72, 0x6e, 0x2f, 0x43, 0x58, 0x1d, 0xe2, 0xaa, 0x62, 0xd9, 0xf8, 0x05, 0x53, 0x2e, 0xdf, 0xf1, 0xee, 0xd6, 0x87, 0xfb, 0x54, 0x15, 0x3d
};
u8 ivec[] {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
u8 in[] {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
};
u8 out[] {
// Pasted from the output. The actual success condition is
// not crashing when incrementing the counter.
0x6e, 0x8c, 0xfc, 0x59, 0x08, 0xa8, 0xc0, 0xf1, 0xe6, 0x85, 0x96, 0xe9, 0xc5, 0x40, 0xb6, 0x8b, 0xfe, 0x28, 0x72, 0xe2, 0x24, 0x11, 0x7e, 0x59, 0xef, 0xac, 0x5c, 0xe1, 0x06, 0x89, 0x09, 0xab, 0xf8, 0x90, 0x1c, 0x66
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
}
void aes_ctr_test_decrypt()
{
auto test_it = [](auto key, auto ivec, auto in, auto out_expected) {
// nonce is already included in ivec.
Crypto::Cipher::AESCipher::CTRMode cipher(key, 8 * key.size(), Crypto::Cipher::Intent::Decryption);
ByteBuffer out_actual = ByteBuffer::create_zeroed(in.size());
auto out_span = out_actual.span();
cipher.decrypt(in.span(), out_span, ivec.span());
if (out_expected.size() != out_span.size()) {
FAIL(size mismatch);
printf("Expected %zu bytes but got %zu\n", out_expected.size(), out_span.size());
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else if (memcmp(out_expected.data(), out_span.data(), out_expected.size()) != 0) {
FAIL(invalid data);
print_buffer(out_span, Crypto::Cipher::AESCipher::block_size());
} else
PASS;
};
// From RFC 3686, Section 6
{
// Test Vector #1
I_TEST((AES CTR 16 octets with 128 bit key | Decrypt))
u8 key[] {
0xae, 0x68, 0x52, 0xf8, 0x12, 0x10, 0x67, 0xcc, 0x4b, 0xf7, 0xa5, 0x76, 0x55, 0x77, 0xf3, 0x9e
};
u8 ivec[] {
0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 + 1 // See CTR.h
};
u8 out[] {
0x53, 0x69, 0x6e, 0x67, 0x6c, 0x65, 0x20, 0x62, 0x6c, 0x6f, 0x63, 0x6b, 0x20, 0x6d, 0x73, 0x67
};
u8 in[] {
0xe4, 0x09, 0x5d, 0x4f, 0xb7, 0xa7, 0xb3, 0x79, 0x2d, 0x61, 0x75, 0xa3, 0x26, 0x13, 0x11, 0xb8
};
test_it(AS_BB(key), AS_BB(ivec), AS_BB(in), AS_BB(out));
}
// If encryption works, then decryption works, too.
}
int md5_tests()
{
md5_test_name();
md5_test_hash();
md5_test_consecutive_updates();
return g_some_test_failed ? 1 : 0;
}
void md5_test_name()
{
I_TEST((MD5 class name));
Crypto::Hash::MD5 md5;
if (md5.class_name() != "MD5")
FAIL(Invalid class name);
else
PASS;
}
void md5_test_hash()
{
{
I_TEST((MD5 Hashing | "Well hello friends"));
u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
};
auto digest = Crypto::Hash::MD5::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
} else {
PASS;
}
}
// RFC tests
{
I_TEST((MD5 Hashing | ""));
u8 result[] {
0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04, 0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e
};
auto digest = Crypto::Hash::MD5::hash("");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | "a"));
u8 result[] {
0x0c, 0xc1, 0x75, 0xb9, 0xc0, 0xf1, 0xb6, 0xa8, 0x31, 0xc3, 0x99, 0xe2, 0x69, 0x77, 0x26, 0x61
};
auto digest = Crypto::Hash::MD5::hash("a");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | "abcdefghijklmnopqrstuvwxyz"));
u8 result[] {
0xc3, 0xfc, 0xd3, 0xd7, 0x61, 0x92, 0xe4, 0x00, 0x7d, 0xfb, 0x49, 0x6c, 0xca, 0x67, 0xe1, 0x3b
};
auto digest = Crypto::Hash::MD5::hash("abcdefghijklmnopqrstuvwxyz");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
} else {
PASS;
}
}
{
I_TEST((MD5 Hashing | Long Sequence));
u8 result[] {
0x57, 0xed, 0xf4, 0xa2, 0x2b, 0xe3, 0xc9, 0x55, 0xac, 0x49, 0xda, 0x2e, 0x21, 0x07, 0xb6, 0x7a
};
auto digest = Crypto::Hash::MD5::hash("12345678901234567890123456789012345678901234567890123456789012345678901234567890");
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::MD5::digest_size() }, -1);
} else {
PASS;
}
}
}
void md5_test_consecutive_updates()
{
{
I_TEST((MD5 Hashing | Multiple Updates));
u8 result[] {
0xaf, 0x04, 0x3a, 0x08, 0x94, 0x38, 0x6e, 0x7f, 0xbf, 0x73, 0xe4, 0xaa, 0xf0, 0x8e, 0xee, 0x4c
};
Crypto::Hash::MD5 md5;
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest = md5.digest();
if (memcmp(result, digest.data, Crypto::Hash::MD5::digest_size()) != 0)
FAIL(Invalid hash);
else
PASS;
}
{
I_TEST((MD5 Hashing | Reuse));
Crypto::Hash::MD5 md5;
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest0 = md5.digest();
md5.update("Well");
md5.update(" hello ");
md5.update("friends");
auto digest1 = md5.digest();
if (memcmp(digest0.data, digest1.data, Crypto::Hash::MD5::digest_size()) != 0)
FAIL(Cannot reuse);
else
PASS;
}
}
int hmac_md5_tests()
{
hmac_md5_test_name();
hmac_md5_test_process();
return g_some_test_failed ? 1 : 0;
}
int hmac_sha256_tests()
{
hmac_sha256_test_name();
hmac_sha256_test_process();
return g_some_test_failed ? 1 : 0;
}
int hmac_sha512_tests()
{
hmac_sha512_test_name();
hmac_sha512_test_process();
return g_some_test_failed ? 1 : 0;
}
void hmac_md5_test_name()
{
I_TEST((HMAC - MD5 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-MD5")
FAIL(Invalid class name);
else
PASS;
}
void hmac_md5_test_process()
{
{
I_TEST((HMAC - MD5 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
u8 result[] {
0x3b, 0x5b, 0xde, 0x30, 0x3a, 0x54, 0x7b, 0xbb, 0x09, 0xfe, 0x78, 0x89, 0xbc, 0x9f, 0x22, 0xa3
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
FAIL(Invalid mac);
print_buffer({ mac.data, hmac.digest_size() }, -1);
} else
PASS;
}
{
I_TEST((HMAC - MD5 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::MD5> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
int sha1_tests()
{
sha1_test_name();
sha1_test_hash();
return g_some_test_failed ? 1 : 0;
}
void sha1_test_name()
{
I_TEST((SHA1 class name));
Crypto::Hash::SHA1 sha;
if (sha.class_name() != "SHA1") {
FAIL(Invalid class name);
printf("%s\n", sha.class_name().characters());
} else
PASS;
}
void sha1_test_hash()
{
{
I_TEST((SHA256 Hashing | ""));
u8 result[] {
0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09
};
auto digest = Crypto::Hash::SHA1::hash("");
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
} else
PASS;
}
{
I_TEST((SHA256 Hashing | Long String));
u8 result[] {
0x12, 0x15, 0x1f, 0xb1, 0x04, 0x44, 0x93, 0xcc, 0xed, 0x54, 0xa6, 0xb8, 0x7e, 0x93, 0x37, 0x7b, 0xb2, 0x13, 0x39, 0xdb
};
auto digest = Crypto::Hash::SHA1::hash("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
} else
PASS;
}
{
I_TEST((SHA256 Hashing | Successive Updates));
u8 result[] {
0xd6, 0x6e, 0xce, 0xd1, 0xf4, 0x08, 0xc6, 0xd8, 0x35, 0xab, 0xf0, 0xc9, 0x05, 0x26, 0xa4, 0xb2, 0xb8, 0xa3, 0x7c, 0xd3
};
auto hasher = Crypto::Hash::SHA1 {};
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaaaaaaaa");
hasher.update("aaaaaaaaa");
auto digest = hasher.digest();
if (memcmp(result, digest.data, Crypto::Hash::SHA1::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA1::digest_size() }, -1);
} else
PASS;
}
}
int sha256_tests()
{
sha256_test_name();
sha256_test_hash();
return g_some_test_failed ? 1 : 0;
}
void sha256_test_name()
{
I_TEST((SHA256 class name));
Crypto::Hash::SHA256 sha;
if (sha.class_name() != "SHA256") {
FAIL(Invalid class name);
printf("%s\n", sha.class_name().characters());
} else
PASS;
}
void sha256_test_hash()
{
{
I_TEST((SHA256 Hashing | "Well hello friends"));
u8 result[] {
0x9a, 0xcd, 0x50, 0xf9, 0xa2, 0xaf, 0x37, 0xe4, 0x71, 0xf7, 0x61, 0xc3, 0xfe, 0x7b, 0x8d, 0xea, 0x56, 0x17, 0xe5, 0x1d, 0xac, 0x80, 0x2f, 0xe6, 0xc1, 0x77, 0xb7, 0x4a, 0xbf, 0x0a, 0xbb, 0x5a
};
auto digest = Crypto::Hash::SHA256::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
} else
PASS;
}
{
I_TEST((SHA256 Hashing | ""));
u8 result[] {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
};
auto digest = Crypto::Hash::SHA256::hash("");
if (memcmp(result, digest.data, Crypto::Hash::SHA256::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA256::digest_size() }, -1);
} else
PASS;
}
}
void hmac_sha256_test_name()
{
I_TEST((HMAC - SHA256 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-SHA256")
FAIL(Invalid class name);
else
PASS;
}
void hmac_sha256_test_process()
{
{
I_TEST((HMAC - SHA256 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
u8 result[] {
0x1a, 0xf2, 0x20, 0x62, 0xde, 0x3b, 0x84, 0x65, 0xc1, 0x25, 0x23, 0x99, 0x76, 0x15, 0x1b, 0xec, 0x15, 0x21, 0x82, 0x1f, 0x23, 0xca, 0x11, 0x66, 0xdd, 0x8c, 0x6e, 0xf1, 0x81, 0x3b, 0x7f, 0x1b
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
FAIL(Invalid mac);
print_buffer({ mac.data, hmac.digest_size() }, -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA256 | DataSize > FinalBlockDataSize));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
u8 result[] = {
0x9b, 0xa3, 0x9e, 0xf3, 0xb4, 0x30, 0x5f, 0x6f, 0x67, 0xd0, 0xa8, 0xb0, 0xf0, 0xcb, 0x12, 0xf5, 0x85, 0xe2, 0x19, 0xba, 0x0c, 0x8b, 0xe5, 0x43, 0xf0, 0x93, 0x39, 0xa8, 0xa3, 0x07, 0xf1, 0x95
};
auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
FAIL(Invalid mac);
print_buffer({ mac.data, hmac.digest_size() }, -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA256 | DataSize == BlockSize));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
u8 result[] = {
0x1d, 0x90, 0xce, 0x68, 0x45, 0x0b, 0xba, 0xd6, 0xbe, 0x1c, 0xb2, 0x3a, 0xea, 0x7f, 0xac, 0x4b, 0x68, 0x08, 0xa4, 0x77, 0x81, 0x2a, 0xad, 0x5d, 0x05, 0xe2, 0x15, 0xe8, 0xf4, 0xcb, 0x06, 0xaf
};
auto mac = hmac.process("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa");
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
FAIL(Invalid mac);
print_buffer({ mac.data, hmac.digest_size() }, -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA256 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::SHA256> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
int sha512_tests()
{
sha512_test_name();
sha512_test_hash();
return g_some_test_failed ? 1 : 0;
}
void sha512_test_name()
{
I_TEST((SHA512 class name));
Crypto::Hash::SHA512 sha;
if (sha.class_name() != "SHA512") {
FAIL(Invalid class name);
printf("%s\n", sha.class_name().characters());
} else
PASS;
}
void sha512_test_hash()
{
{
I_TEST((SHA512 Hashing | "Well hello friends"));
u8 result[] {
0x00, 0xfe, 0x68, 0x09, 0x71, 0x0e, 0xcb, 0x2b, 0xe9, 0x58, 0x00, 0x13, 0x69, 0x6a, 0x9e, 0x9e, 0xbd, 0x09, 0x1b, 0xfe, 0x14, 0xc9, 0x13, 0x82, 0xc7, 0x40, 0x34, 0xfe, 0xca, 0xe6, 0x87, 0xcb, 0x26, 0x36, 0x92, 0xe6, 0x34, 0x94, 0x3a, 0x11, 0xe5, 0xbb, 0xb5, 0xeb, 0x8e, 0x70, 0xef, 0x64, 0xca, 0xf7, 0x21, 0xb1, 0xde, 0xf2, 0x34, 0x85, 0x6f, 0xa8, 0x56, 0xd8, 0x23, 0xa1, 0x3b, 0x29
};
auto digest = Crypto::Hash::SHA512::hash("Well hello friends");
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
} else
PASS;
}
{
I_TEST((SHA512 Hashing | ""));
u8 result[] {
0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e
};
auto digest = Crypto::Hash::SHA512::hash("");
if (memcmp(result, digest.data, Crypto::Hash::SHA512::digest_size()) != 0) {
FAIL(Invalid hash);
print_buffer({ digest.data, Crypto::Hash::SHA512::digest_size() }, -1);
} else
PASS;
}
}
void hmac_sha512_test_name()
{
I_TEST((HMAC - SHA512 | Class name));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
if (hmac.class_name() != "HMAC-SHA512")
FAIL(Invalid class name);
else
PASS;
}
void hmac_sha512_test_process()
{
{
I_TEST((HMAC - SHA512 | Basic));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
u8 result[] {
0xeb, 0xa8, 0x34, 0x11, 0xfd, 0x5b, 0x46, 0x5b, 0xef, 0xbb, 0x67, 0x5e, 0x7d, 0xc2, 0x7c, 0x2c, 0x6b, 0xe1, 0xcf, 0xe6, 0xc7, 0xe4, 0x7d, 0xeb, 0xca, 0x97, 0xb7, 0x4c, 0xd3, 0x4d, 0x6f, 0x08, 0x9f, 0x0d, 0x3a, 0xf1, 0xcb, 0x00, 0x79, 0x78, 0x2f, 0x05, 0x8e, 0xeb, 0x94, 0x48, 0x0d, 0x50, 0x64, 0x3b, 0xca, 0x70, 0xe2, 0x69, 0x38, 0x4f, 0xe4, 0xb0, 0x49, 0x0f, 0xc5, 0x4c, 0x7a, 0xa7
};
auto mac = hmac.process("Some bogus data");
if (memcmp(result, mac.data, hmac.digest_size()) != 0) {
FAIL(Invalid mac);
print_buffer({ mac.data, hmac.digest_size() }, -1);
} else
PASS;
}
{
I_TEST((HMAC - SHA512 | Reuse));
Crypto::Authentication::HMAC<Crypto::Hash::SHA512> hmac("Well Hello Friends");
auto mac_0 = hmac.process("Some bogus data");
auto mac_1 = hmac.process("Some bogus data");
if (memcmp(mac_0.data, mac_1.data, hmac.digest_size()) != 0) {
FAIL(Cannot reuse);
} else
PASS;
}
}
int rsa_tests()
{
rsa_test_encrypt();
rsa_test_der_parse();
bigint_test_number_theory();
rsa_test_encrypt_decrypt();
rsa_emsa_pss_test_create();
return g_some_test_failed ? 1 : 0;
}
void rsa_test_encrypt()
{
{
I_TEST((RSA RAW | Encryption));
ByteBuffer data { "hellohellohellohellohellohellohellohellohellohellohellohello123-"_b };
u8 result[] { 0x6f, 0x7b, 0xe2, 0xd3, 0x95, 0xf8, 0x8d, 0x87, 0x6d, 0x10, 0x5e, 0xc3, 0xcd, 0xf7, 0xbb, 0xa6, 0x62, 0x8e, 0x45, 0xa0, 0xf1, 0xe5, 0x0f, 0xdf, 0x69, 0xcb, 0xb6, 0xd5, 0x42, 0x06, 0x7d, 0x72, 0xa9, 0x5e, 0xae, 0xbf, 0xbf, 0x0f, 0xe0, 0xeb, 0x31, 0x31, 0xca, 0x8a, 0x81, 0x1e, 0xb9, 0xec, 0x6d, 0xcc, 0xb8, 0xa4, 0xac, 0xa3, 0x31, 0x05, 0xa9, 0xac, 0xc9, 0xd3, 0xe6, 0x2a, 0x18, 0xfe };
Crypto::PK::RSA rsa(
"8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
"4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
"65537"_bigint);
u8 buffer[rsa.output_size()];
auto buf = ByteBuffer::wrap(buffer, sizeof(buffer));
rsa.encrypt(data, buf);
if (memcmp(result, buf.data(), buf.size())) {
FAIL(Invalid encryption result);
print_buffer(buf.span(), 16);
} else {
PASS;
}
}
{
I_TEST((RSA PKCS #1 1.5 | Encryption));
ByteBuffer data { "hellohellohellohellohellohellohellohellohello123-"_b };
Crypto::PK::RSA_PKCS1_EME rsa(
"8126832723025844890518845777858816391166654950553329127845898924164623511718747856014227624997335860970996746552094406240834082304784428582653994490504519"_bigint,
"4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint,
"65537"_bigint);
u8 buffer[rsa.output_size()];
auto buf = ByteBuffer::wrap(buffer, sizeof(buffer));
rsa.encrypt(data, buf);
rsa.decrypt(buf, buf);
if (memcmp(buf.data(), "hellohellohellohellohellohellohellohellohello123-", 49))
FAIL(Invalid encryption);
else {
dbg() << "out size " << buf.size() << " values: " << StringView { (char*)buf.data(), buf.size() };
PASS;
}
}
}
void bigint_test_number_theory()
{
{
I_TEST((Number Theory | Modular Inverse));
if (Crypto::NumberTheory::ModularInverse(7, 87) == 25) {
PASS;
} else {
FAIL(Invalid result);
}
}
{
I_TEST((Number Theory | Modular Power));
auto exp = Crypto::NumberTheory::ModularPower(
Crypto::UnsignedBigInteger::from_base10("2988348162058574136915891421498819466320163312926952423791023078876139"),
Crypto::UnsignedBigInteger::from_base10("2351399303373464486466122544523690094744975233415544072992656881240319"),
10000);
if (exp == 3059) {
PASS;
} else {
FAIL(Invalid result);
puts(exp.to_base10().characters());
}
}
}
void rsa_emsa_pss_test_create()
{
{
// This is a template validity test
I_TEST((RSA EMSA_PSS | Construction));
Crypto::PK::RSA rsa;
Crypto::PK::RSA_EMSA_PSS<Crypto::Hash::SHA256> rsa_esma_pss(rsa);
PASS;
}
}
void rsa_test_der_parse()
{
I_TEST((RSA | ASN1 DER / PEM encoded Key import));
auto privkey = R"(-----BEGIN RSA PRIVATE KEY-----
MIIBOgIBAAJBAJsrIYHxs1YL9tpfodaWs1lJoMdF4kgFisUFSj6nvBhJUlmBh607AlgTaX0E
DGPYycXYGZ2n6rqmms5lpDXBpUcCAwEAAQJAUNpPkmtEHDENxsoQBUXvXDYeXdePSiIBJhpU
joNOYoR5R9z5oX2cpcyykQ58FC2vKKg+x8N6xczG7qO95tw5UQIhAN354CP/FA+uTeJ6KJ+i
zCBCl58CjNCzO0s5HTc56el5AiEAsvPKXo5/9gS/S4UzDRP6abq7GreixTfjR8LXidk3FL8C
IQCTjYI861Y+hjMnlORkGSdvWlTHUj6gjEOh4TlWeJzQoQIgAxMZOQKtxCZUuxFwzRq4xLRG
nrDlBQpuxz7bwSyQO7UCIHrYMnDohgNbwtA5ZpW3H1cKKQQvueWm6sxW9P5sUrZ3
-----END RSA PRIVATE KEY-----)";
Crypto::PK::RSA rsa(privkey);
if (rsa.public_key().public_exponent() == 65537) {
if (rsa.private_key().private_exponent() == "4234603516465654167360850580101327813936403862038934287300450163438938741499875303761385527882335478349599685406941909381269804396099893549838642251053393"_bigint) {
PASS;
} else
FAIL(Invalid private exponent);
} else {
FAIL(Invalid public exponent);
}
}
void rsa_test_encrypt_decrypt()
{
I_TEST((RSA | Encrypt));
dbg() << " creating rsa object";
Crypto::PK::RSA rsa(
"9527497237087650398000977129550904920919162360737979403539302312977329868395261515707123424679295515888026193056908173564681660256268221509339074678416049"_bigint,
"39542231845947188736992321577701849924317746648774438832456325878966594812143638244746284968851807975097653255909707366086606867657273809465195392910913"_bigint,
"65537"_bigint);
dbg() << "Output size: " << rsa.output_size();
auto dec = ByteBuffer::create_zeroed(rsa.output_size());
auto enc = ByteBuffer::create_zeroed(rsa.output_size());
enc.overwrite(0, "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64);
rsa.encrypt(enc, dec);
rsa.decrypt(dec, enc);
dbg() << "enc size " << enc.size() << " dec size " << dec.size();
if (memcmp(enc.data(), "WellHelloFriendsWellHelloFriendsWellHelloFriendsWellHelloFriends", 64) != 0) {
FAIL(Could not encrypt then decrypt);
} else {
PASS;
}
}
int tls_tests()
{
tls_test_client_hello();
return g_some_test_failed ? 1 : 0;
}
void tls_test_client_hello()
{
I_TEST((TLS | Connect and Data Transfer));
Core::EventLoop loop;
RefPtr<TLS::TLSv12> tls = TLS::TLSv12::construct(nullptr);
bool sent_request = false;
ByteBuffer contents = ByteBuffer::create_uninitialized(0);
tls->on_tls_ready_to_write = [&](TLS::TLSv12& tls) {
if (sent_request)
return;
sent_request = true;
if (!tls.write("GET / HTTP/1.1\r\nHost: github.com\r\nConnection: close\r\n\r\n"_b)) {
FAIL(write() failed);
loop.quit(0);
}
};
tls->on_tls_ready_to_read = [&](TLS::TLSv12& tls) {
auto data = tls.read();
if (!data.has_value()) {
FAIL(No data received);
loop.quit(1);
} else {
// print_buffer(data.value(), 16);
contents.append(data.value().data(), data.value().size());
}
};
tls->on_tls_finished = [&] {
PASS;
auto file = Core::File::open("foo.response", Core::IODevice::WriteOnly);
if (file.is_error()) {
printf("Can't write there, %s\n", file.error().characters());
loop.quit(2);
return;
}
file.value()->write(contents);
file.value()->close();
loop.quit(0);
};
tls->on_tls_error = [&](TLS::AlertDescription) {
FAIL(Connection failure);
loop.quit(1);
};
if (!tls->connect("github.com", 443)) {
FAIL(connect() failed);
return;
}
loop.exec();
}
int adler32_tests()
{
auto do_test = [](ReadonlyBytes input, u32 expected_result) {
I_TEST((CRC32));
auto pass = Crypto::Checksum::Adler32(input).digest() == expected_result;
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
};
do_test(String("").bytes(), 0x1);
do_test(String("a").bytes(), 0x00620062);
do_test(String("abc").bytes(), 0x024d0127);
do_test(String("message digest").bytes(), 0x29750586);
do_test(String("abcdefghijklmnopqrstuvwxyz").bytes(), 0x90860b20);
return g_some_test_failed ? 1 : 0;
}
int crc32_tests()
{
auto do_test = [](ReadonlyBytes input, u32 expected_result) {
I_TEST((Adler32));
auto pass = Crypto::Checksum::CRC32(input).digest() == expected_result;
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
};
do_test(String("").bytes(), 0x0);
do_test(String("The quick brown fox jumps over the lazy dog").bytes(), 0x414FA339);
do_test(String("various CRC algorithms input data").bytes(), 0x9BD366AE);
return g_some_test_failed ? 1 : 0;
}
int bigint_tests()
{
bigint_test_fibo500();
bigint_addition_edgecases();
bigint_subtraction();
bigint_multiplication();
bigint_division();
bigint_base10();
bigint_import_export();
bigint_bitwise();
bigint_test_signed_fibo500();
bigint_signed_addition_edgecases();
bigint_signed_subtraction();
bigint_signed_multiplication();
bigint_signed_division();
bigint_signed_base10();
bigint_signed_import_export();
bigint_signed_bitwise();
return g_some_test_failed ? 1 : 0;
}
Crypto::UnsignedBigInteger bigint_fibonacci(size_t n)
{
Crypto::UnsignedBigInteger num1(0);
Crypto::UnsignedBigInteger num2(1);
for (size_t i = 0; i < n; ++i) {
Crypto::UnsignedBigInteger t = num1.plus(num2);
num2 = num1;
num1 = t;
}
return num1;
}
Crypto::SignedBigInteger bigint_signed_fibonacci(size_t n)
{
Crypto::SignedBigInteger num1(0);
Crypto::SignedBigInteger num2(1);
for (size_t i = 0; i < n; ++i) {
Crypto::SignedBigInteger t = num1.plus(num2);
num2 = num1;
num1 = t;
}
return num1;
}
void bigint_test_fibo500()
{
{
I_TEST((BigInteger | Fibonacci500));
bool pass = (bigint_fibonacci(500).words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_addition_edgecases()
{
{
I_TEST((BigInteger | Edge Cases));
Crypto::UnsignedBigInteger num1;
Crypto::UnsignedBigInteger num2(70);
Crypto::UnsignedBigInteger num3 = num1.plus(num2);
bool pass = (num3 == num2);
pass &= (num1 == Crypto::UnsignedBigInteger(0));
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Borrow with zero));
Crypto::UnsignedBigInteger num1({ UINT32_MAX - 3, UINT32_MAX });
Crypto::UnsignedBigInteger num2({ UINT32_MAX - 2, 0 });
if (num1.plus(num2).words() == Vector<u32> { 4294967289, 0, 1 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_subtraction()
{
{
I_TEST((BigInteger | Simple Subtraction 1));
Crypto::UnsignedBigInteger num1(80);
Crypto::UnsignedBigInteger num2(70);
if (num1.minus(num2) == Crypto::UnsignedBigInteger(10)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Simple Subtraction 2));
Crypto::UnsignedBigInteger num1(50);
Crypto::UnsignedBigInteger num2(70);
if (num1.minus(num2).is_invalid()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with borrow));
Crypto::UnsignedBigInteger num1(UINT32_MAX);
Crypto::UnsignedBigInteger num2(1);
Crypto::UnsignedBigInteger num3 = num1.plus(num2);
Crypto::UnsignedBigInteger result = num3.minus(num2);
if (result == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with large numbers));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(343);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(218);
Crypto::UnsignedBigInteger result = num1.minus(num2);
if ((result.plus(num2) == num1)
&& (result.words() == Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 })) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Subtraction with large numbers 2));
Crypto::UnsignedBigInteger num1(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 });
Crypto::UnsignedBigInteger num2(Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 });
Crypto::UnsignedBigInteger result = num1.minus(num2);
// this test only verifies that we don't crash on an assertion
PASS;
}
{
I_TEST((BigInteger | Subtraction Regression 1));
auto num = Crypto::UnsignedBigInteger { 1 }.shift_left(256);
if (num.minus(1).words() == Vector<u32> { 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 4294967295, 0 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_multiplication()
{
{
I_TEST((BigInteger | Simple Multiplication));
Crypto::UnsignedBigInteger num1(8);
Crypto::UnsignedBigInteger num2(251);
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
if (result.words() == Vector<u32> { 2008 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Multiplications with big numbers 1));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
Crypto::UnsignedBigInteger num2(12345678);
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
if (result.words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Multiplications with big numbers 2));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(200);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(341);
Crypto::UnsignedBigInteger result = num1.multiplied_by(num2);
if (result.words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_division()
{
{
I_TEST((BigInteger | Simple Division));
Crypto::UnsignedBigInteger num1(27194);
Crypto::UnsignedBigInteger num2(251);
auto result = num1.divided_by(num2);
Crypto::UnsignedDivisionResult expected = { Crypto::UnsignedBigInteger(108), Crypto::UnsignedBigInteger(86) };
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Division with big numbers));
Crypto::UnsignedBigInteger num1 = bigint_fibonacci(386);
Crypto::UnsignedBigInteger num2 = bigint_fibonacci(238);
auto result = num1.divided_by(num2);
Crypto::UnsignedDivisionResult expected = {
Crypto::UnsignedBigInteger(Vector<u32> { 2300984486, 2637503534, 2022805584, 107 }),
Crypto::UnsignedBigInteger(Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 })
};
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | Combined test));
auto num1 = bigint_fibonacci(497);
auto num2 = bigint_fibonacci(238);
auto div_result = num1.divided_by(num2);
if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_base10()
{
{
I_TEST((BigInteger | From String));
auto result = Crypto::UnsignedBigInteger::from_base10("57195071295721390579057195715793");
if (result.words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((BigInteger | To String));
auto result = Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }.to_base10();
if (result == "57195071295721390579057195715793") {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_import_export()
{
{
I_TEST((BigInteger | BigEndian Decode / Encode roundtrip));
u8 random_bytes[128];
u8 target_buffer[128];
AK::fill_with_random(random_bytes, 128);
auto encoded = Crypto::UnsignedBigInteger::import_data(random_bytes, 128);
encoded.export_data({ target_buffer, 128 });
if (memcmp(target_buffer, random_bytes, 128) != 0)
FAIL(Could not roundtrip);
else
PASS;
}
{
I_TEST((BigInteger | BigEndian Encode / Decode roundtrip));
u8 target_buffer[128];
auto encoded = "12345678901234567890"_bigint;
auto size = encoded.export_data({ target_buffer, 128 });
auto decoded = Crypto::UnsignedBigInteger::import_data(target_buffer, size);
if (encoded != decoded)
FAIL(Could not roundtrip);
else
PASS;
}
{
I_TEST((BigInteger | BigEndian Import));
auto number = Crypto::UnsignedBigInteger::import_data("hello");
if (number == "448378203247"_bigint) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | BigEndian Export));
auto number = "448378203247"_bigint;
char exported[8] { 0 };
auto exported_length = number.export_data({ exported, 8 }, true);
if (exported_length == 5 && memcmp(exported + 3, "hello", 5) == 0) {
PASS;
} else {
FAIL(Invalid value);
print_buffer({ exported - exported_length + 8, exported_length }, -1);
}
}
}
void bigint_bitwise()
{
{
I_TEST((BigInteger | Basic bitwise or));
auto num1 = "1234567"_bigint;
auto num2 = "1234567"_bigint;
if (num1.bitwise_or(num2) == num1) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | Bitwise or handles different lengths));
auto num1 = "1234567"_bigint;
auto num2 = "123456789012345678901234567890"_bigint;
auto expected = "123456789012345678901234622167"_bigint;
auto result = num1.bitwise_or(num2);
if (result == expected) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | Basic bitwise and));
auto num1 = "1234567"_bigint;
auto num2 = "1234561"_bigint;
if (num1.bitwise_and(num2) == "1234561"_bigint) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | Bitwise and handles different lengths));
auto num1 = "1234567"_bigint;
auto num2 = "123456789012345678901234567890"_bigint;
if (num1.bitwise_and(num2) == "1180290"_bigint) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | Basic bitwise xor));
auto num1 = "1234567"_bigint;
auto num2 = "1234561"_bigint;
if (num1.bitwise_xor(num2) == 6) {
PASS;
} else {
FAIL(Invalid value);
}
}
{
I_TEST((BigInteger | Bitwise xor handles different lengths));
auto num1 = "1234567"_bigint;
auto num2 = "123456789012345678901234567890"_bigint;
if (num1.bitwise_xor(num2) == "123456789012345678901233441877"_bigint) {
PASS;
} else {
FAIL(Invalid value);
}
}
}
void bigint_test_signed_fibo500()
{
{
I_TEST((Signed BigInteger | Fibonacci500));
bool pass = (bigint_signed_fibonacci(500).unsigned_value().words() == AK::Vector<u32> { 315178285, 505575602, 1883328078, 125027121, 3649625763, 347570207, 74535262, 3832543808, 2472133297, 1600064941, 65273441 });
if (pass) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_addition_edgecases()
{
{
I_TEST((Signed BigInteger | Borrow with zero));
Crypto::SignedBigInteger num1 { Crypto::UnsignedBigInteger { { UINT32_MAX - 3, UINT32_MAX } }, false };
Crypto::SignedBigInteger num2 { Crypto::UnsignedBigInteger { UINT32_MAX - 2 }, false };
if (num1.plus(num2).unsigned_value().words() == Vector<u32> { 4294967289, 0, 1 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Addition to other sign));
Crypto::SignedBigInteger num1 = INT32_MAX;
Crypto::SignedBigInteger num2 = num1;
num2.negate();
if (num1.plus(num2) == Crypto::SignedBigInteger { 0 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_subtraction()
{
{
I_TEST((Signed BigInteger | Simple Subtraction 1));
Crypto::SignedBigInteger num1(80);
Crypto::SignedBigInteger num2(70);
if (num1.minus(num2) == Crypto::SignedBigInteger(10)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Simple Subtraction 2));
Crypto::SignedBigInteger num1(50);
Crypto::SignedBigInteger num2(70);
if (num1.minus(num2) == Crypto::SignedBigInteger { -20 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with borrow));
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { UINT32_MAX });
Crypto::SignedBigInteger num2(1);
Crypto::SignedBigInteger num3 = num1.plus(num2);
Crypto::SignedBigInteger result = num2.minus(num3);
num1.negate();
if (result == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with large numbers));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(343);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(218);
Crypto::SignedBigInteger result = num2.minus(num1);
auto expected = Crypto::UnsignedBigInteger { Vector<u32> { 811430588, 2958904896, 1130908877, 2830569969, 3243275482, 3047460725, 774025231, 7990 } };
if ((result.plus(num1) == num2)
&& (result.unsigned_value() == expected)) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Subtraction with large numbers 2));
Crypto::SignedBigInteger num1(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } });
Crypto::SignedBigInteger num2(Crypto::UnsignedBigInteger { Vector<u32> { 4196414175, 1117247942, 1123294122, 191895498, 3347106536, 16 } });
Crypto::SignedBigInteger result = num1.minus(num2);
// this test only verifies that we don't crash on an assertion
PASS;
}
}
void bigint_signed_multiplication()
{
{
I_TEST((Signed BigInteger | Simple Multiplication));
Crypto::SignedBigInteger num1(8);
Crypto::SignedBigInteger num2(-251);
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result == Crypto::SignedBigInteger { -2008 }) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Multiplications with big numbers 1));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
Crypto::SignedBigInteger num2(-12345678);
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result.unsigned_value().words() == Vector<u32> { 669961318, 143970113, 4028714974, 3164551305, 1589380278, 2 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Multiplications with big numbers 2));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(200);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(341);
num1.negate();
Crypto::SignedBigInteger result = num1.multiplied_by(num2);
if (result.unsigned_value().words() == Vector<u32> { 3017415433, 2741793511, 1957755698, 3731653885, 3154681877, 785762127, 3200178098, 4260616581, 529754471, 3632684436, 1073347813, 2516430 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_division()
{
{
I_TEST((Signed BigInteger | Simple Division));
Crypto::SignedBigInteger num1(27194);
Crypto::SignedBigInteger num2(-251);
auto result = num1.divided_by(num2);
Crypto::SignedDivisionResult expected = { Crypto::SignedBigInteger(-108), Crypto::SignedBigInteger(86) };
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Division with big numbers));
Crypto::SignedBigInteger num1 = bigint_signed_fibonacci(386);
Crypto::SignedBigInteger num2 = bigint_signed_fibonacci(238);
num1.negate();
auto result = num1.divided_by(num2);
Crypto::SignedDivisionResult expected = {
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 2300984486, 2637503534, 2022805584, 107 } }, true),
Crypto::SignedBigInteger(Crypto::UnsignedBigInteger { Vector<u32> { 1483061863, 446680044, 1123294122, 191895498, 3347106536, 16, 0, 0, 0 } }, true)
};
if (result.quotient == expected.quotient && result.remainder == expected.remainder) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | Combined test));
auto num1 = bigint_signed_fibonacci(497);
auto num2 = bigint_signed_fibonacci(238);
num1.negate();
auto div_result = num1.divided_by(num2);
if (div_result.quotient.multiplied_by(num2).plus(div_result.remainder) == num1) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_base10()
{
{
I_TEST((Signed BigInteger | From String));
auto result = Crypto::SignedBigInteger::from_base10("-57195071295721390579057195715793");
if (result.unsigned_value().words() == Vector<u32> { 3806301393, 954919431, 3879607298, 721 } && result.is_negative()) {
PASS;
} else {
FAIL(Incorrect Result);
}
}
{
I_TEST((Signed BigInteger | To String));
auto result = Crypto::SignedBigInteger { Crypto::UnsignedBigInteger { Vector<u32> { 3806301393, 954919431, 3879607298, 721 } }, true }.to_base10();
if (result == "-57195071295721390579057195715793") {
PASS;
} else {
FAIL(Incorrect Result);
}
}
}
void bigint_signed_import_export()
{
{
I_TEST((Signed BigInteger | BigEndian Decode / Encode roundtrip));
u8 random_bytes[129];
u8 target_buffer[129];
random_bytes[0] = 1;
AK::fill_with_random(random_bytes + 1, 128);
auto encoded = Crypto::SignedBigInteger::import_data(random_bytes, 129);
encoded.export_data({ target_buffer, 129 });
if (memcmp(target_buffer, random_bytes, 129) != 0)
FAIL(Could not roundtrip);
else
PASS;
}
{
I_TEST((Signed BigInteger | BigEndian Encode / Decode roundtrip));
u8 target_buffer[128];
auto encoded = "-12345678901234567890"_sbigint;
auto size = encoded.export_data({ target_buffer, 128 });
auto decoded = Crypto::SignedBigInteger::import_data(target_buffer, size);
if (encoded != decoded)
FAIL(Could not roundtrip);
else
PASS;
}
}
void bigint_signed_bitwise()
{
{
I_TEST((Signed BigInteger | Bitwise or handles sign));
auto num1 = "-1234567"_sbigint;
auto num2 = "1234567"_sbigint;
if (num1.bitwise_or(num2) == num1) {
PASS;
} else {
FAIL(Invalid value);
}
}
}