serenity/Kernel/Time/TimeManagement.cpp
2020-09-25 21:18:17 +02:00

245 lines
7.5 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Singleton.h>
#include <AK/Time.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/HPETComparator.h>
#include <Kernel/Time/HardwareTimer.h>
#include <Kernel/Time/PIT.h>
#include <Kernel/Time/RTC.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
//#define TIME_DEBUG
namespace Kernel {
static AK::Singleton<TimeManagement> s_the;
TimeManagement& TimeManagement::the()
{
return *s_the;
}
bool TimeManagement::is_system_timer(const HardwareTimer& timer) const
{
return &timer == m_system_timer.ptr();
}
void TimeManagement::set_epoch_time(timespec ts)
{
timespec ticks = { 0, (long)ticks_this_second() * (long)1'000'000 };
timespec_sub(ts, ticks, ts);
InterruptDisabler disabler;
m_epoch_time = ts;
}
timespec TimeManagement::epoch_time() const
{
timespec ts = m_epoch_time;
timespec ticks = { 0, (long)ticks_this_second() * (long)1'000'000 };
timespec_add(ts, ticks, ts);
return ts;
}
void TimeManagement::initialize()
{
ASSERT(!s_the.is_initialized());
s_the.ensure_instance();
}
time_t TimeManagement::seconds_since_boot() const
{
return m_seconds_since_boot;
}
time_t TimeManagement::ticks_per_second() const
{
return m_system_timer->ticks_per_second();
}
time_t TimeManagement::ticks_this_second() const
{
return m_ticks_this_second;
}
time_t TimeManagement::boot_time() const
{
return RTC::boot_time();
}
TimeManagement::TimeManagement()
{
bool probe_non_legacy_hardware_timers = !(kernel_command_line().lookup("time").value_or("modern") == "legacy");
if (ACPI::is_enabled()) {
if (!ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
} else {
klog() << "ACPI: RTC CMOS Not present";
}
} else {
// We just assume that we can access RTC CMOS, if ACPI isn't usable.
RTC::initialize();
m_epoch_time.tv_sec += boot_time();
}
if (probe_non_legacy_hardware_timers) {
if (!probe_and_set_non_legacy_hardware_timers())
if (!probe_and_set_legacy_hardware_timers())
ASSERT_NOT_REACHED();
return;
}
if (probe_and_set_legacy_hardware_timers())
return;
ASSERT_NOT_REACHED();
}
timeval TimeManagement::now_as_timeval()
{
timespec ts = s_the.ptr()->epoch_time();
timeval tv;
timespec_to_timeval(ts, tv);
return tv;
}
Vector<HardwareTimer*> TimeManagement::scan_and_initialize_periodic_timers()
{
bool should_enable = is_hpet_periodic_mode_allowed();
dbg() << "Time: Scanning for periodic timers";
Vector<HardwareTimer*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (hardware_timer.is_periodic_capable()) {
timers.append(&hardware_timer);
if (should_enable)
hardware_timer.set_periodic();
}
}
return timers;
}
Vector<HardwareTimer*> TimeManagement::scan_for_non_periodic_timers()
{
dbg() << "Time: Scanning for non-periodic timers";
Vector<HardwareTimer*> timers;
for (auto& hardware_timer : m_hardware_timers) {
if (!hardware_timer.is_periodic_capable())
timers.append(&hardware_timer);
}
return timers;
}
bool TimeManagement::is_hpet_periodic_mode_allowed()
{
auto hpet_mode = kernel_command_line().lookup("hpet").value_or("periodic");
if (hpet_mode == "periodic")
return true;
if (hpet_mode == "nonperiodic")
return false;
ASSERT_NOT_REACHED();
}
bool TimeManagement::probe_and_set_non_legacy_hardware_timers()
{
if (!ACPI::is_enabled())
return false;
if (!HPET::test_and_initialize())
return false;
if (!HPET::the().comparators().size()) {
dbg() << "HPET initialization aborted.";
return false;
}
dbg() << "HPET: Setting appropriate functions to timers.";
for (auto& hpet_comparator : HPET::the().comparators())
m_hardware_timers.append(hpet_comparator);
auto periodic_timers = scan_and_initialize_periodic_timers();
auto non_periodic_timers = scan_for_non_periodic_timers();
if (is_hpet_periodic_mode_allowed())
ASSERT(!periodic_timers.is_empty());
ASSERT(periodic_timers.size() + non_periodic_timers.size() >= 2);
if (periodic_timers.size() >= 2) {
m_time_keeper_timer = periodic_timers[1];
m_system_timer = periodic_timers[0];
} else {
if (periodic_timers.size() == 1) {
m_time_keeper_timer = periodic_timers[0];
m_system_timer = non_periodic_timers[0];
} else {
m_time_keeper_timer = non_periodic_timers[1];
m_system_timer = non_periodic_timers[0];
}
}
m_system_timer->set_callback(Scheduler::timer_tick);
dbg() << "Reset timers";
m_system_timer->try_to_set_frequency(m_system_timer->calculate_nearest_possible_frequency(1024));
m_time_keeper_timer->set_callback(TimeManagement::update_time);
m_time_keeper_timer->try_to_set_frequency(OPTIMAL_TICKS_PER_SECOND_RATE);
return true;
}
bool TimeManagement::probe_and_set_legacy_hardware_timers()
{
if (ACPI::is_enabled()) {
if (ACPI::Parser::the()->x86_specific_flags().cmos_rtc_not_present) {
dbg() << "ACPI: CMOS RTC Not Present";
return false;
} else {
dbg() << "ACPI: CMOS RTC Present";
}
}
m_hardware_timers.append(PIT::initialize(TimeManagement::update_time));
m_hardware_timers.append(RealTimeClock::create(Scheduler::timer_tick));
m_time_keeper_timer = m_hardware_timers[0];
m_system_timer = m_hardware_timers[1];
return true;
}
void TimeManagement::update_time(const RegisterState& regs)
{
TimeManagement::the().increment_time_since_boot(regs);
}
void TimeManagement::increment_time_since_boot(const RegisterState&)
{
ASSERT(!m_time_keeper_timer.is_null());
if (++m_ticks_this_second >= m_time_keeper_timer->ticks_per_second()) {
// FIXME: Synchronize with other clock somehow to prevent drifting apart.
++m_seconds_since_boot;
++m_epoch_time.tv_sec;
m_ticks_this_second = 0;
}
}
}