serenity/Userland/Libraries/LibJS/Heap/Heap.cpp
Idan Horowitz a00d154522 LibJS: Notify WeakSets when heap cells are sweeped
This is an implementation of the following optional optimization:
https://tc39.es/ecma262/#sec-weakref-execution
2021-06-09 21:52:25 +01:00

312 lines
9.5 KiB
C++

/*
* Copyright (c) 2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Badge.h>
#include <AK/Debug.h>
#include <AK/HashTable.h>
#include <AK/StackInfo.h>
#include <AK/TemporaryChange.h>
#include <LibCore/ElapsedTimer.h>
#include <LibJS/Heap/CellAllocator.h>
#include <LibJS/Heap/Handle.h>
#include <LibJS/Heap/Heap.h>
#include <LibJS/Heap/HeapBlock.h>
#include <LibJS/Interpreter.h>
#include <LibJS/Runtime/Object.h>
#include <LibJS/Runtime/WeakSet.h>
#include <setjmp.h>
namespace JS {
Heap::Heap(VM& vm)
: m_vm(vm)
{
if constexpr (HeapBlock::min_possible_cell_size <= 16) {
m_allocators.append(make<CellAllocator>(16));
}
static_assert(HeapBlock::min_possible_cell_size <= 24, "Heap Cell tracking uses too much data!");
m_allocators.append(make<CellAllocator>(32));
m_allocators.append(make<CellAllocator>(64));
m_allocators.append(make<CellAllocator>(128));
m_allocators.append(make<CellAllocator>(256));
m_allocators.append(make<CellAllocator>(512));
m_allocators.append(make<CellAllocator>(1024));
m_allocators.append(make<CellAllocator>(3072));
}
Heap::~Heap()
{
collect_garbage(CollectionType::CollectEverything);
}
ALWAYS_INLINE CellAllocator& Heap::allocator_for_size(size_t cell_size)
{
for (auto& allocator : m_allocators) {
if (allocator->cell_size() >= cell_size)
return *allocator;
}
dbgln("Cannot get CellAllocator for cell size {}, largest available is {}!", cell_size, m_allocators.last()->cell_size());
VERIFY_NOT_REACHED();
}
Cell* Heap::allocate_cell(size_t size)
{
if (should_collect_on_every_allocation()) {
collect_garbage();
} else if (m_allocations_since_last_gc > m_max_allocations_between_gc) {
m_allocations_since_last_gc = 0;
collect_garbage();
} else {
++m_allocations_since_last_gc;
}
auto& allocator = allocator_for_size(size);
return allocator.allocate_cell(*this);
}
void Heap::collect_garbage(CollectionType collection_type, bool print_report)
{
VERIFY(!m_collecting_garbage);
TemporaryChange change(m_collecting_garbage, true);
Core::ElapsedTimer collection_measurement_timer;
collection_measurement_timer.start();
if (collection_type == CollectionType::CollectGarbage) {
if (m_gc_deferrals) {
m_should_gc_when_deferral_ends = true;
return;
}
HashTable<Cell*> roots;
gather_roots(roots);
mark_live_cells(roots);
}
sweep_dead_cells(print_report, collection_measurement_timer);
}
void Heap::gather_roots(HashTable<Cell*>& roots)
{
vm().gather_roots(roots);
gather_conservative_roots(roots);
for (auto* handle : m_handles)
roots.set(handle->cell());
for (auto* list : m_marked_value_lists) {
for (auto& value : list->values()) {
if (value.is_cell())
roots.set(&value.as_cell());
}
}
if constexpr (HEAP_DEBUG) {
dbgln("gather_roots:");
for (auto* root : roots)
dbgln(" + {}", root);
}
}
__attribute__((no_sanitize("address"))) void Heap::gather_conservative_roots(HashTable<Cell*>& roots)
{
FlatPtr dummy;
dbgln_if(HEAP_DEBUG, "gather_conservative_roots:");
jmp_buf buf;
setjmp(buf);
HashTable<FlatPtr> possible_pointers;
auto* raw_jmp_buf = reinterpret_cast<FlatPtr const*>(buf);
for (size_t i = 0; i < ((size_t)sizeof(buf)) / sizeof(FlatPtr); i += sizeof(FlatPtr))
possible_pointers.set(raw_jmp_buf[i]);
auto stack_reference = bit_cast<FlatPtr>(&dummy);
auto& stack_info = m_vm.stack_info();
for (FlatPtr stack_address = stack_reference; stack_address < stack_info.top(); stack_address += sizeof(FlatPtr)) {
auto data = *reinterpret_cast<FlatPtr*>(stack_address);
possible_pointers.set(data);
}
HashTable<HeapBlock*> all_live_heap_blocks;
for_each_block([&](auto& block) {
all_live_heap_blocks.set(&block);
return IterationDecision::Continue;
});
for (auto possible_pointer : possible_pointers) {
if (!possible_pointer)
continue;
dbgln_if(HEAP_DEBUG, " ? {}", (const void*)possible_pointer);
auto* possible_heap_block = HeapBlock::from_cell(reinterpret_cast<const Cell*>(possible_pointer));
if (all_live_heap_blocks.contains(possible_heap_block)) {
if (auto* cell = possible_heap_block->cell_from_possible_pointer(possible_pointer)) {
if (cell->state() == Cell::State::Live) {
dbgln_if(HEAP_DEBUG, " ?-> {}", (const void*)cell);
roots.set(cell);
} else {
dbgln_if(HEAP_DEBUG, " #-> {}", (const void*)cell);
}
}
}
}
}
class MarkingVisitor final : public Cell::Visitor {
public:
MarkingVisitor() { }
virtual void visit_impl(Cell& cell)
{
if (cell.is_marked())
return;
dbgln_if(HEAP_DEBUG, " ! {}", &cell);
cell.set_marked(true);
cell.visit_edges(*this);
}
};
void Heap::mark_live_cells(const HashTable<Cell*>& roots)
{
dbgln_if(HEAP_DEBUG, "mark_live_cells:");
MarkingVisitor visitor;
for (auto* root : roots)
visitor.visit(root);
}
void Heap::sweep_dead_cells(bool print_report, const Core::ElapsedTimer& measurement_timer)
{
dbgln_if(HEAP_DEBUG, "sweep_dead_cells:");
Vector<HeapBlock*, 32> empty_blocks;
Vector<HeapBlock*, 32> full_blocks_that_became_usable;
Vector<Cell*> sweeped_cells;
size_t collected_cells = 0;
size_t live_cells = 0;
size_t collected_cell_bytes = 0;
size_t live_cell_bytes = 0;
auto should_store_sweeped_cells = !m_weak_sets.is_empty();
for_each_block([&](auto& block) {
bool block_has_live_cells = false;
bool block_was_full = block.is_full();
block.template for_each_cell_in_state<Cell::State::Live>([&](Cell* cell) {
if (!cell->is_marked()) {
dbgln_if(HEAP_DEBUG, " ~ {}", cell);
if (should_store_sweeped_cells)
sweeped_cells.append(cell);
block.deallocate(cell);
++collected_cells;
collected_cell_bytes += block.cell_size();
} else {
cell->set_marked(false);
block_has_live_cells = true;
++live_cells;
live_cell_bytes += block.cell_size();
}
});
if (!block_has_live_cells)
empty_blocks.append(&block);
else if (block_was_full != block.is_full())
full_blocks_that_became_usable.append(&block);
return IterationDecision::Continue;
});
for (auto* block : empty_blocks) {
dbgln_if(HEAP_DEBUG, " - HeapBlock empty @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_empty({}, *block);
}
for (auto* block : full_blocks_that_became_usable) {
dbgln_if(HEAP_DEBUG, " - HeapBlock usable again @ {}: cell_size={}", block, block->cell_size());
allocator_for_size(block->cell_size()).block_did_become_usable({}, *block);
}
for (auto* weak_set : m_weak_sets)
weak_set->remove_sweeped_cells({}, sweeped_cells);
if constexpr (HEAP_DEBUG) {
for_each_block([&](auto& block) {
dbgln(" > Live HeapBlock @ {}: cell_size={}", &block, block.cell_size());
return IterationDecision::Continue;
});
}
int time_spent = measurement_timer.elapsed();
if (print_report) {
size_t live_block_count = 0;
for_each_block([&](auto&) {
++live_block_count;
return IterationDecision::Continue;
});
dbgln("Garbage collection report");
dbgln("=============================================");
dbgln(" Time spent: {} ms", time_spent);
dbgln(" Live cells: {} ({} bytes)", live_cells, live_cell_bytes);
dbgln("Collected cells: {} ({} bytes)", collected_cells, collected_cell_bytes);
dbgln(" Live blocks: {} ({} bytes)", live_block_count, live_block_count * HeapBlock::block_size);
dbgln(" Freed blocks: {} ({} bytes)", empty_blocks.size(), empty_blocks.size() * HeapBlock::block_size);
dbgln("=============================================");
}
}
void Heap::did_create_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(!m_handles.contains(&impl));
m_handles.set(&impl);
}
void Heap::did_destroy_handle(Badge<HandleImpl>, HandleImpl& impl)
{
VERIFY(m_handles.contains(&impl));
m_handles.remove(&impl);
}
void Heap::did_create_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
{
VERIFY(!m_marked_value_lists.contains(&list));
m_marked_value_lists.set(&list);
}
void Heap::did_destroy_marked_value_list(Badge<MarkedValueList>, MarkedValueList& list)
{
VERIFY(m_marked_value_lists.contains(&list));
m_marked_value_lists.remove(&list);
}
void Heap::did_create_weak_set(Badge<WeakSet>, WeakSet& set)
{
VERIFY(!m_weak_sets.contains(&set));
m_weak_sets.set(&set);
}
void Heap::did_destroy_weak_set(Badge<WeakSet>, WeakSet& set)
{
VERIFY(m_weak_sets.contains(&set));
m_weak_sets.remove(&set);
}
void Heap::defer_gc(Badge<DeferGC>)
{
++m_gc_deferrals;
}
void Heap::undefer_gc(Badge<DeferGC>)
{
VERIFY(m_gc_deferrals > 0);
--m_gc_deferrals;
if (!m_gc_deferrals) {
if (m_should_gc_when_deferral_ends)
collect_garbage();
m_should_gc_when_deferral_ends = false;
}
}
}