serenity/Kernel/Scheduler.cpp

615 lines
20 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/QuickSort.h>
#include <AK/TemporaryChange.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Net/Socket.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
//#define SCHEDULER_RUNNABLE_DEBUG
namespace Kernel {
SchedulerData* g_scheduler_data;
timeval g_timeofday;
RecursiveSpinLock g_scheduler_lock;
void Scheduler::init_thread(Thread& thread)
{
g_scheduler_data->m_nonrunnable_threads.append(thread);
}
void Scheduler::update_state_for_thread(Thread& thread)
{
ASSERT_INTERRUPTS_DISABLED();
auto& list = g_scheduler_data->thread_list_for_state(thread.state());
if (list.contains(thread))
return;
list.append(thread);
}
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 1ms
if (&thread == Processor::current().idle_thread())
return 1;
return 10;
}
timeval Scheduler::time_since_boot()
{
return { TimeManagement::the().seconds_since_boot(), (suseconds_t)TimeManagement::the().ticks_this_second() * 1000 };
}
Thread* g_finalizer;
WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work{false};
static Process* s_colonel_process;
u64 g_uptime;
Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
: m_joinee(joinee)
, m_joinee_exit_value(joinee_exit_value)
{
ASSERT(m_joinee.m_joiner == nullptr);
auto current_thread = Thread::current();
m_joinee.m_joiner = current_thread;
current_thread->m_joinee = &joinee;
}
bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
{
return !joiner.m_joinee;
}
Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
: m_blocked_description(description)
{
}
const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
{
return m_blocked_description;
}
Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.can_accept();
}
Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.setup_state() == Socket::SetupState::Completed;
}
Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_send_timeout()) {
timeval deadline = Scheduler::time_since_boot();
deadline.tv_sec += socket.send_timeout().tv_sec;
deadline.tv_usec += socket.send_timeout().tv_usec;
deadline.tv_sec += (socket.send_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::WriteBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_write();
}
return blocked_description().can_write();
}
Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_receive_timeout()) {
timeval deadline = Scheduler::time_since_boot();
deadline.tv_sec += socket.receive_timeout().tv_sec;
deadline.tv_usec += socket.receive_timeout().tv_usec;
deadline.tv_sec += (socket.receive_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::ReadBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_read();
}
return blocked_description().can_read();
}
Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
: m_block_until_condition(move(condition))
, m_state_string(state_string)
{
ASSERT(m_block_until_condition);
}
bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
{
return m_block_until_condition();
}
Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
: m_wakeup_time(wakeup_time)
{
}
bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
{
return m_wakeup_time <= g_uptime;
}
Thread::SelectBlocker::SelectBlocker(const timespec& ts, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
: m_select_timeout(ts)
, m_select_has_timeout(select_has_timeout)
, m_select_read_fds(read_fds)
, m_select_write_fds(write_fds)
, m_select_exceptional_fds(except_fds)
{
}
bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
{
if (m_select_has_timeout) {
if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec * 1000 >= m_select_timeout.tv_nsec))
return true;
}
auto& process = thread.process();
for (int fd : m_select_read_fds) {
if (!process.m_fds[fd])
continue;
if (process.m_fds[fd].description->can_read())
return true;
}
for (int fd : m_select_write_fds) {
if (!process.m_fds[fd])
continue;
if (process.m_fds[fd].description->can_write())
return true;
}
return false;
}
Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
: m_wait_options(wait_options)
, m_waitee_pid(waitee_pid)
{
}
bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
{
bool should_unblock = m_wait_options & WNOHANG;
if (m_waitee_pid != -1) {
auto* peer = Process::from_pid(m_waitee_pid);
if (!peer)
return true;
}
thread.process().for_each_child([&](Process& child) {
if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
return IterationDecision::Continue;
bool child_exited = child.is_dead();
bool child_stopped = false;
if (child.thread_count()) {
child.for_each_thread([&](auto& child_thread) {
if (child_thread.state() == Thread::State::Stopped && !child_thread.has_pending_signal(SIGCONT)) {
child_stopped = true;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
bool fits_the_spec = ((m_wait_options & WEXITED) && child_exited)
|| ((m_wait_options & WSTOPPED) && child_stopped);
if (!fits_the_spec)
return IterationDecision::Continue;
m_waitee_pid = child.pid();
should_unblock = true;
return IterationDecision::Break;
});
return should_unblock;
}
Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
: m_reason(reason)
{
}
bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
{
// someone else has to unblock us
return false;
}
// Called by the scheduler on threads that are blocked for some reason.
// Make a decision as to whether to unblock them or not.
void Thread::consider_unblock(time_t now_sec, long now_usec)
{
switch (state()) {
case Thread::Invalid:
case Thread::Runnable:
case Thread::Running:
case Thread::Dead:
case Thread::Stopped:
case Thread::Queued:
case Thread::Dying:
/* don't know, don't care */
return;
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
if (m_blocker->should_unblock(*this, now_sec, now_usec))
unblock();
return;
case Thread::Skip1SchedulerPass:
set_state(Thread::Skip0SchedulerPasses);
return;
case Thread::Skip0SchedulerPasses:
set_state(Thread::Runnable);
return;
}
}
void Scheduler::start()
{
ASSERT_INTERRUPTS_DISABLED();
auto& processor = Processor::current();
ASSERT(processor.current_thread() == nullptr);
auto& idle_thread = *processor.idle_thread();
processor.set_current_thread(idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
Processor::init_context(idle_thread);
idle_thread.set_state(Thread::Running);
processor.initialize_context_switching(idle_thread);
ASSERT_NOT_REACHED();
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
auto now = time_since_boot();
auto now_sec = now.tv_sec;
auto now_usec = now.tv_usec;
ScopedSpinLock lock(g_scheduler_lock);
// Check and unblock threads whose wait conditions have been met.
Scheduler::for_each_nonrunnable([&](Thread& thread) {
thread.consider_unblock(now_sec, now_usec);
return IterationDecision::Continue;
});
Process::for_each([&](Process& process) {
if (process.is_dead()) {
if (current_thread->process().pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbg() << "Scheduler: Reaped unparented process " << name << "(" << pid << "), exit status: " << exit_status.si_status;
}
return IterationDecision::Continue;
}
if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
process.m_alarm_deadline = 0;
process.send_signal(SIGALRM, nullptr);
}
return IterationDecision::Continue;
});
// Dispatch any pending signals.
Thread::for_each_living([&](Thread& thread) -> IterationDecision {
if (!thread.has_unmasked_pending_signals())
return IterationDecision::Continue;
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
// while some other process is interrupted. Otherwise a mess will be made.
if (&thread == current_thread)
return IterationDecision::Continue;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue.
// Before returning to userspace from a syscall, we will block a thread if it has any
// pending unmasked signals, allowing it to be dispatched then.
if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
return IterationDecision::Continue;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = thread.is_blocked();
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
return IterationDecision::Continue;
if (was_blocked) {
#ifdef SCHEDULER_DEBUG
dbg() << "Unblock " << thread << " due to signal";
#endif
ASSERT(thread.m_blocker != nullptr);
thread.m_blocker->set_interrupted_by_signal();
thread.unblock();
}
return IterationDecision::Continue;
});
#ifdef SCHEDULER_RUNNABLE_DEBUG
dbg() << "Non-runnables:";
Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
dbg() << "Runnables:";
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
dbg() << " " << String::format("%3u", thread.effective_priority()) << "/" << String::format("%2u", thread.priority()) << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
#endif
Vector<Thread*, 128> sorted_runnables;
for_each_runnable([&sorted_runnables](auto& thread) {
sorted_runnables.append(&thread);
return IterationDecision::Continue;
});
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
Thread* thread_to_schedule = nullptr;
for (auto* thread : sorted_runnables) {
if (thread->process().is_being_inspected())
continue;
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
continue;
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
if (!thread_to_schedule) {
thread->m_extra_priority = 0;
thread_to_schedule = thread;
} else {
thread->m_extra_priority++;
}
}
if (!thread_to_schedule)
thread_to_schedule = Processor::current().idle_thread();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: Switch to " << *thread_to_schedule << " @ " << String::format("%04x:%08x", thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
#endif
lock.unlock();
return context_switch(*thread_to_schedule);
}
bool Scheduler::yield()
{
auto& proc = Processor::current();
auto current_thread = Thread::current();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: yielding thread " << *current_thread << " in_trap: " << proc.in_trap() << " in_irq: " << proc.in_irq();
#endif
InterruptDisabler disabler;
ASSERT(current_thread != nullptr);
if (proc.in_irq()) {
// If we're handling an IRQ we can't switch context, delay until
// exiting the trap
proc.invoke_scheduler_async();
} else if (!Scheduler::pick_next())
return false;
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: yield returns to thread " << *current_thread << " in_trap: " << proc.in_trap() << " in_irq: " << proc.in_irq();
#endif
return true;
}
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
{
InterruptDisabler disabler;
ASSERT(!Processor::current().in_irq());
if (!Thread::is_thread(beneficiary))
return false;
(void)reason;
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: Donating " << ticks_to_donate << " ticks to " << *beneficiary << ", reason=" << reason;
#endif
beneficiary->set_ticks_left(ticks_to_donate);
Scheduler::context_switch(*beneficiary);
return false;
}
bool Scheduler::context_switch(Thread& thread)
{
thread.set_ticks_left(time_slice_for(thread));
thread.did_schedule();
auto current_thread = Thread::current();
if (current_thread == &thread)
return false;
if (current_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current_thread->state() == Thread::Running)
current_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbg() << "Scheduler: " << *current_thread << " -> " << thread << " [" << thread.priority() << "] " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
#endif
}
if (!thread.is_initialized()) {
Processor::init_context(thread);
thread.set_initialized(true);
}
thread.set_state(Thread::Running);
Processor::current().switch_context(current_thread, &thread);
return true;
}
Process* Scheduler::colonel()
{
return s_colonel_process;
}
void Scheduler::initialize(u32 cpu)
{
static Atomic<u32> s_bsp_is_initialized;
ASSERT(&Processor::current() != nullptr); // sanity check
Thread* idle_thread = nullptr;
if (cpu == 0) {
ASSERT(s_bsp_is_initialized.load(AK::MemoryOrder::memory_order_consume) == 0);
g_scheduler_data = new SchedulerData;
g_finalizer_wait_queue = new WaitQueue;
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop);
ASSERT(s_colonel_process);
ASSERT(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(String::format("idle thread #%u", cpu));
} else {
// We need to make sure the BSP initialized the global data first
if (s_bsp_is_initialized.load(AK::MemoryOrder::memory_order_consume) == 0) {
dbg() << "Scheduler CPU #" << cpu << " waiting for BSP to initialize first";
while (s_bsp_is_initialized.load(AK::MemoryOrder::memory_order_consume) == 0) {
}
}
ASSERT(s_colonel_process);
idle_thread = s_colonel_process->create_kernel_thread(idle_loop, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), false);
ASSERT(idle_thread);
}
Processor::current().set_idle_thread(*idle_thread);
if (cpu == 0)
s_bsp_is_initialized.store(1, AK::MemoryOrder::memory_order_release);
}
void Scheduler::timer_tick(const RegisterState& regs)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
auto current_thread = Processor::current().current_thread();
if (!current_thread)
return;
++g_uptime;
g_timeofday = TimeManagement::now_as_timeval();
if (current_thread->process().is_profiling()) {
SmapDisabler disabler;
auto backtrace = current_thread->raw_backtrace(regs.ebp, regs.eip);
auto& sample = Profiling::next_sample_slot();
sample.pid = current_thread->process().pid();
sample.tid = current_thread->tid();
sample.timestamp = g_uptime;
for (size_t i = 0; i < min(backtrace.size(), Profiling::max_stack_frame_count); ++i) {
sample.frames[i] = backtrace[i];
}
}
TimerQueue::the().fire();
if (current_thread->tick())
return;
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!Processor::current().in_irq());
pick_next();
}
void Scheduler::idle_loop()
{
dbg() << "Scheduler: idle loop on CPU #" << Processor::current().id();
ASSERT(are_interrupts_enabled());
for (;;) {
asm("hlt");
yield();
}
}
}