serenity/Kernel/Net/RTL8168NetworkAdapter.cpp
Andreas Kling 2cd8b21974 Kernel: Add convenience values to the Memory::Region::Access enum
Instead of `Memory::Region::Access::Read | Memory::Region::AccessWrite`
you can now say `Memory::Region::Access::ReadWrite`.
2021-08-06 22:25:00 +02:00

1662 lines
50 KiB
C++

/*
* Copyright (c) 2021, Idan Horowitz <idan.horowitz@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MACAddress.h>
#include <Kernel/Bus/PCI/IDs.h>
#include <Kernel/Debug.h>
#include <Kernel/Net/RTL8168NetworkAdapter.h>
#include <Kernel/Sections.h>
namespace Kernel {
#define REG_MAC 0x00
#define REG_MAR4 0x0B
#define REG_MAR0 0x0F
#define REG_EEE_LED 0x1B
#define REG_TXADDR 0x20
#define REG_COMMAND 0x37
#define REG_TXSTART 0x38
#define REG_IMR 0x3C
#define REG_ISR 0x3E
#define REG_TXCFG 0x40
#define REG_RXCFG 0x44
#define REG_MPC 0x4C
#define REG_CFG9346 0x50
#define REG_CONFIG1 0x52
#define REG_CONFIG2 0x53
#define REG_CONFIG3 0x54
#define REG_CONFIG4 0x55
#define REG_CONFIG5 0x56
#define REG_MULTIINTR 0x5C
#define REG_PHYACCESS 0x60
#define REG_CSI_DATA 0x64
#define REG_CSI_ADDR 0x68
#define REG_PHYSTATUS 0x6C
#define REG_PMCH 0x6F
#define REG_ERI_DATA 0x70
#define REG_ERI_ADDR 0x74
#define REG_EPHYACCESS 0x80
#define REG_OCP_DATA 0xB0
#define REG_OCP_ADDR 0xB4
#define REG_GPHY_OCP 0xB8
#define REG_DLLPR 0xD0
#define REG_MCU 0xD3
#define REG_RMS 0xDA
#define REG_CPLUS_COMMAND 0xE0
#define REG_INT_MOD 0xE2
#define REG_RXADDR 0xE4
#define REG_MTPS 0xEC
#define REG_MISC 0xF0
#define REG_MISC2 0xF2
#define REG_IBCR0 0xF8
#define REG_IBCR2 0xF9
#define REG_IBISR0 0xFB
#define COMMAND_TX_ENABLE 0x4
#define COMMAND_RX_ENABLE 0x8
#define COMMAND_RESET 0x10
#define CPLUS_COMMAND_VERIFY_CHECKSUM 0x20
#define CPLUS_COMMAND_VLAN_STRIP 0x40
#define CPLUS_COMMAND_MAC_DBGO_SEL 0x1C
#define CPLUS_COMMAND_PACKET_CONTROL_DISABLE 0x80
#define CPLUS_COMMAND_ASF 0x100
#define CPLUS_COMMAND_CXPL_DBG_SEL 0x200
#define CPLUS_COMMAND_FORCE_TXFLOW_ENABLE 0x400
#define CPLUS_COMMAND_FORCE_RXFLOW_ENABLE 0x800
#define CPLUS_COMMAND_FORCE_HALF_DUP 0x1000
#define CPLUS_COMMAND_MAC_DBGO_OE 0x4000
#define CPLUS_COMMAND_ENABLE_BIST 0x8000
#define INT_RXOK 0x1
#define INT_RXERR 0x2
#define INT_TXOK 0x4
#define INT_TXERR 0x8
#define INT_RX_OVERFLOW 0x10
#define INT_LINK_CHANGE 0x20
#define INT_RX_FIFO_OVERFLOW 0x40
#define INT_SYS_ERR 0x8000
#define CFG9346_NONE 0x00
#define CFG9346_EEM0 0x40
#define CFG9346_EEM1 0x80
#define CFG9346_UNLOCK (CFG9346_EEM0 | CFG9346_EEM1)
#define TXCFG_AUTO_FIFO 0x80
#define TXCFG_MAX_DMA_UNLIMITED 0x700
#define TXCFG_EMPTY 0x800
#define TXCFG_IFG011 0x3000000
#define RXCFG_READ_MASK 0x3F
#define RXCFG_APM 0x2
#define RXCFG_AM 0x4
#define RXCFG_AB 0x8
#define RXCFG_MAX_DMA_UNLIMITED 0x700
#define RXCFG_EARLY_OFF_V2 0x800
#define RXCFG_FTH_NONE 0xE000
#define RXCFG_MULTI_ENABLE 0x4000
#define RXCFG_128INT_ENABLE 0x8000
#define CFG2_CLOCK_REQUEST_ENABLE 0x80
#define CFG3_BEACON_ENABLE 0x1
#define CFG3_READY_TO_L23 0x2
#define CFG5_ASPM_ENABLE 0x1
#define CFG5_SPI_ENABLE 0x8
#define PHY_LINK_STATUS 0x2
#define PHY_FLAG 0x80000000
#define PHY_REG_BMCR 0x00
#define PHY_REG_ANAR 0x4
#define PHY_REG_GBCR 0x9
#define CSI_FLAG 0x80000000
#define CSI_BYTE_ENABLE 0xF000
#define CSI_FUNC_NIC 0x20000
#define CSI_FUNC_NIC2 0x10000
#define CSI_ACCESS_1 0x17000000
#define CSI_ACCESS_2 0x27000000
#define EPHY_FLAG 0x80000000
#define ERI_FLAG 0x80000000
#define ERI_MASK_0001 0x1000
#define ERI_MASK_0011 0x3000
#define ERI_MASK_0100 0x4000
#define ERI_MASK_0101 0x5000
#define ERI_MASK_1111 0xF000
#define ERI_EXGMAC 0x0
#define OCP_FLAG 0x80000000
#define OCP_STANDARD_PHY_BASE 0xa400
#define TXSTART_START 0x40
#define BMCR_RESET 0x8000
#define BMCR_SPEED_0 0x2000
#define BMCR_AUTO_NEGOTIATE 0x1000
#define BMCR_RESTART_AUTO_NEGOTIATE 0x200
#define BMCR_DUPLEX 0x100
#define BMCR_SPEED_1 0x40
#define ADVERTISE_10_HALF 0x20
#define ADVERTISE_10_FULL 0x40
#define ADVERTISE_100_HALF 0x80
#define ADVERTISE_100_FULL 0x100
#define ADVERTISE_PAUSE_CAP 0x400
#define ADVERTISE_PAUSE_ASYM 0x800
#define ADVERTISE_1000_HALF 0x100
#define ADVERTISE_1000_FULL 0x200
#define DLLPR_PFM_ENABLE 0x40
#define DLLPR_TX_10M_PS_ENABLE 0x80
#define MCU_LINK_LIST_READY 0x2
#define MCU_RX_EMPTY 0x10
#define MCU_TX_EMPTY 0x20
#define MCU_NOW_IS_OOB 0x80
#define MTPS_JUMBO 0x3F
#define MISC_RXDV_GATE_ENABLE 0x80000
#define MISC_PWM_ENABLE 0x400000
#define MISC2_PFM_D3COLD_ENABLE 0x40
#define PHYSTATUS_FULLDUP 0x01
#define PHYSTATUS_1000MF 0x10
#define PHYSTATUS_100M 0x08
#define PHYSTATUS_10M 0x04
#define TX_BUFFER_SIZE 0x1FF8
#define RX_BUFFER_SIZE 0x1FF8 // FIXME: this should be increased (0x3FFF)
UNMAP_AFTER_INIT RefPtr<RTL8168NetworkAdapter> RTL8168NetworkAdapter::try_to_initialize(PCI::Address address)
{
auto id = PCI::get_id(address);
if (id.vendor_id != PCI::VendorID::Realtek)
return {};
if (id.device_id != 0x8168)
return {};
u8 irq = PCI::get_interrupt_line(address);
return adopt_ref_if_nonnull(new (nothrow) RTL8168NetworkAdapter(address, irq));
}
UNMAP_AFTER_INIT RTL8168NetworkAdapter::RTL8168NetworkAdapter(PCI::Address address, u8 irq)
: PCI::Device(address, irq)
, m_io_base(PCI::get_BAR0(pci_address()) & ~1)
, m_rx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(TXDescriptor) * (number_of_rx_descriptors + 1)), "RTL8168 RX", Memory::Region::Access::ReadWrite))
, m_tx_descriptors_region(MM.allocate_contiguous_kernel_region(Memory::page_round_up(sizeof(RXDescriptor) * (number_of_tx_descriptors + 1)), "RTL8168 TX", Memory::Region::Access::ReadWrite))
{
set_interface_name(address);
dmesgln("RTL8168: Found @ {}", pci_address());
dmesgln("RTL8168: I/O port base: {}", m_io_base);
identify_chip_version();
dmesgln("RTL8168: Version detected - {} ({}{})", possible_device_name(), (u8)m_version, m_version_uncertain ? "?" : "");
if (m_version == ChipVersion::Unknown || (m_version >= ChipVersion::Version4 && m_version <= ChipVersion::Version16) || m_version >= ChipVersion::Version18) {
dmesgln("RTL8168: Aborting initialization! Support for your chip version ({}) is not implemented yet, please open a GH issue and include this message.", (u8)m_version);
return; // Each ChipVersion requires a specific implementation of configure_phy and hardware_quirks
}
initialize();
startup();
}
void RTL8168NetworkAdapter::initialize()
{
// set initial REG_RXCFG
auto rx_config = RXCFG_MAX_DMA_UNLIMITED;
if (m_version <= ChipVersion::Version3) {
rx_config |= RXCFG_FTH_NONE;
} else if (m_version <= ChipVersion::Version8 || (m_version >= ChipVersion::Version16 && m_version <= ChipVersion::Version19)) {
rx_config |= RXCFG_128INT_ENABLE | RXCFG_MULTI_ENABLE;
} else if (m_version >= ChipVersion::Version21) {
rx_config |= RXCFG_128INT_ENABLE | RXCFG_MULTI_ENABLE | RXCFG_EARLY_OFF_V2;
} else {
rx_config |= RXCFG_128INT_ENABLE;
}
out32(REG_RXCFG, rx_config);
// disable interrupts
out16(REG_IMR, 0);
// initialize hardware
if (m_version == ChipVersion::Version23 || m_version == ChipVersion::Version27 || m_version == ChipVersion::Version28) {
// disable CMAC
out8(REG_IBCR2, in8(REG_IBCR2) & ~1);
while ((in32(REG_IBISR0) & 0x2) != 0)
;
out8(REG_IBISR0, in8(REG_IBISR0) | 0x20);
out8(REG_IBCR0, in8(REG_IBCR0) & ~1);
}
if (m_version >= ChipVersion::Version21) {
m_ocp_base_address = OCP_STANDARD_PHY_BASE;
// enable RXDV gate
out32(REG_MISC, in32(REG_MISC) | MISC_RXDV_GATE_ENABLE);
while ((in32(REG_TXCFG) & TXCFG_EMPTY) == 0)
;
while ((in32(REG_MCU) & (MCU_RX_EMPTY | MCU_TX_EMPTY)) == 0)
;
out8(REG_COMMAND, in8(REG_COMMAND) & ~(COMMAND_RX_ENABLE | COMMAND_TX_ENABLE));
out8(REG_MCU, in8(REG_MCU) & ~MCU_NOW_IS_OOB);
// vendor magic values ???
auto data = ocp_in(0xe8de);
data &= ~(1 << 14);
ocp_out(0xe8de, data);
while ((in32(REG_MCU) & MCU_LINK_LIST_READY) == 0)
;
// vendor magic values ???
data = ocp_in(0xe8de);
data |= (1 << 15);
ocp_out(0xe8de, data);
while ((in32(REG_MCU) & MCU_LINK_LIST_READY) == 0)
;
}
// software reset
reset();
// clear interrupts
out16(REG_ISR, 0xffff);
enable_bus_mastering(pci_address());
read_mac_address();
dmesgln("RTL8168: MAC address: {}", mac_address().to_string());
// notify about driver start
if (m_version >= ChipVersion::Version11 && m_version <= ChipVersion::Version13) {
// if check_dash
// notify
TODO();
} else if (m_version == ChipVersion::Version23 || m_version == ChipVersion::Version27 || m_version == ChipVersion::Version28) {
// if check_dash
// notify
TODO();
}
}
void RTL8168NetworkAdapter::startup()
{
// initialize descriptors
initialize_rx_descriptors();
initialize_tx_descriptors();
// register irq
enable_irq();
// version specific phy configuration
configure_phy();
// software reset phy
phy_out(PHY_REG_BMCR, phy_in(PHY_REG_BMCR) | BMCR_RESET);
while ((phy_in(PHY_REG_BMCR) & BMCR_RESET) != 0)
;
set_phy_speed();
// set C+ command
auto cplus_command = in16(REG_CPLUS_COMMAND) | CPLUS_COMMAND_VERIFY_CHECKSUM | CPLUS_COMMAND_VLAN_STRIP;
out16(REG_CPLUS_COMMAND, cplus_command);
in16(REG_CPLUS_COMMAND); // C+ Command barrier
// power up phy
if (m_version >= ChipVersion::Version9 && m_version <= ChipVersion::Version15) {
out8(REG_PMCH, in8(REG_PMCH) | 0x80);
} else if (m_version >= ChipVersion::Version26) {
out8(REG_PMCH, in8(REG_PMCH) | 0xC0);
} else if (m_version >= ChipVersion::Version21 && m_version <= ChipVersion::Version23) {
out8(REG_PMCH, in8(REG_PMCH) | 0xC0);
// vendor magic values ???
eri_update(0x1a8, ERI_MASK_1111, 0xfc000000, 0, ERI_EXGMAC);
}
// wakeup phy (more vendor magic values)
phy_out(0x1F, 0);
if (m_version <= ChipVersion::Version13) {
phy_out(0x0E, 0);
}
phy_out(PHY_REG_BMCR, BMCR_AUTO_NEGOTIATE); // send known good phy write (acts as a phy barrier)
start_hardware();
// re-enable interrupts
auto enabled_interrupts = INT_RXOK | INT_RXERR | INT_TXOK | INT_TXERR | INT_RX_OVERFLOW | INT_LINK_CHANGE | INT_SYS_ERR;
if (m_version == ChipVersion::Version1) {
enabled_interrupts |= INT_RX_FIFO_OVERFLOW;
enabled_interrupts &= ~INT_RX_OVERFLOW;
}
out16(REG_IMR, enabled_interrupts);
// update link status
m_link_up = (in8(REG_PHYSTATUS) & PHY_LINK_STATUS) != 0;
}
void RTL8168NetworkAdapter::configure_phy()
{
// this method sets a bunch of magic vendor values to the phy configuration registers based on the hardware version
switch (m_version) {
case ChipVersion::Version1: {
configure_phy_b_1();
return;
}
case ChipVersion::Version2:
case ChipVersion::Version3: {
configure_phy_b_2();
return;
}
case ChipVersion::Version4:
TODO();
case ChipVersion::Version5:
TODO();
case ChipVersion::Version6:
TODO();
case ChipVersion::Version7:
TODO();
case ChipVersion::Version8:
TODO();
case ChipVersion::Version9:
TODO();
case ChipVersion::Version10:
TODO();
case ChipVersion::Version11:
TODO();
case ChipVersion::Version12:
TODO();
case ChipVersion::Version13:
TODO();
case ChipVersion::Version14:
TODO();
case ChipVersion::Version15:
TODO();
case ChipVersion::Version16:
TODO();
case ChipVersion::Version17: {
configure_phy_e_2();
return;
}
case ChipVersion::Version18:
TODO();
case ChipVersion::Version19:
TODO();
case ChipVersion::Version20:
TODO();
case ChipVersion::Version21:
TODO();
case ChipVersion::Version22:
TODO();
case ChipVersion::Version23:
TODO();
case ChipVersion::Version24:
TODO();
case ChipVersion::Version25:
TODO();
case ChipVersion::Version26:
TODO();
case ChipVersion::Version27:
TODO();
case ChipVersion::Version28:
TODO();
case ChipVersion::Version29: {
configure_phy_h_1();
return;
}
case ChipVersion::Version30: {
configure_phy_h_2();
return;
}
default:
VERIFY_NOT_REACHED();
}
}
void RTL8168NetworkAdapter::configure_phy_b_1()
{
constexpr PhyRegister phy_registers[] = {
{ 0x10, 0xf41b },
{ 0x1f, 0 }
};
phy_out(0x1f, 0x1);
phy_out(0x16, 1 << 0);
phy_out_batch(phy_registers, 2);
}
void RTL8168NetworkAdapter::configure_phy_b_2()
{
constexpr PhyRegister phy_registers[] = {
{ 0x1f, 0x1 },
{ 0x10, 0xf41b },
{ 0x1f, 0 }
};
phy_out_batch(phy_registers, 3);
}
void RTL8168NetworkAdapter::configure_phy_e_2()
{
// FIXME: linux's driver writes a firmware blob to the device at this point, is this needed?
constexpr PhyRegister phy_registers[] = {
// Enable delay cap
{ 0x1f, 0x4 },
{ 0x1f, 0x7 },
{ 0x1e, 0xac },
{ 0x18, 0x6 },
{ 0x1f, 0x2 },
{ 0x1f, 0 },
{ 0x1f, 0 },
// Channel estimation fine tune
{ 0x1f, 0x3 },
{ 0x9, 0xa20f },
{ 0x1f, 0 },
{ 0x1f, 0 },
// Green Setting
{ 0x1f, 0x5 },
{ 0x5, 0x8b5b },
{ 0x6, 0x9222 },
{ 0x5, 0x8b6d },
{ 0x6, 0x8000 },
{ 0x5, 0x8b76 },
{ 0x6, 0x8000 },
{ 0x1f, 0 },
};
phy_out_batch(phy_registers, 19);
// 4 corner performance improvement
phy_out(0x1f, 0x5);
phy_out(0x5, 0x8b80);
phy_update(0x17, 0x6, 0);
phy_out(0x1f, 0);
// PHY auto speed down
phy_out(0x1f, 0x4);
phy_out(0x1f, 0x7);
phy_out(0x1e, 0x2d);
phy_update(0x18, 0x10, 0);
phy_out(0x1f, 0x2);
phy_out(0x1f, 0);
phy_update(0x14, 0x8000, 0);
// Improve 10M EEE waveform
phy_out(0x1f, 0x5);
phy_out(0x5, 0x8b86);
phy_update(0x6, 0x1, 0);
phy_out(0x1f, 0);
// Improve 2-pair detection performance
phy_out(0x1f, 0x5);
phy_out(0x5, 0x8b85);
phy_update(0x6, 0x4000, 0);
phy_out(0x1f, 0);
// EEE Setting
eri_update(0x1b0, ERI_MASK_1111, 0, 0x3, ERI_EXGMAC);
phy_out(0x1f, 0x5);
phy_out(0x5, 0x8b85);
phy_update(0x6, 0, 0x2000);
phy_out(0x1f, 0x4);
phy_out(0x1f, 0x7);
phy_out(0x1e, 0x20);
phy_update(0x15, 0, 0x100);
phy_out(0x1f, 0x2);
phy_out(0x1f, 0);
phy_out(0xd, 0x7);
phy_out(0xe, 0x3c);
phy_out(0xd, 0x4007);
phy_out(0xe, 0);
phy_out(0xd, 0);
// Green feature
phy_out(0x1f, 0x3);
phy_update(0x19, 0, 0x1);
phy_update(0x10, 0, 0x400);
phy_out(0x1f, 0);
// Broken BIOS workaround: feed GigaMAC registers with MAC address.
rar_exgmac_set();
}
void RTL8168NetworkAdapter::configure_phy_h_1()
{
// FIXME: linux's driver writes a firmware blob to the device at this point, is this needed?
// CHN EST parameters adjust - giga master
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x809b);
phy_update(0x14, 0x8000, 0xf800);
phy_out(0x13, 0x80a2);
phy_update(0x14, 0x8000, 0xff00);
phy_out(0x13, 0x80a4);
phy_update(0x14, 0x8500, 0xff00);
phy_out(0x13, 0x809c);
phy_update(0x14, 0xbd00, 0xff00);
phy_out(0x1f, 0);
// CHN EST parameters adjust - giga slave
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x80ad);
phy_update(0x14, 0x7000, 0xf800);
phy_out(0x13, 0x80b4);
phy_update(0x14, 0x5000, 0xff00);
phy_out(0x13, 0x80ac);
phy_update(0x14, 0x4000, 0xff00);
phy_out(0x1f, 0);
// CHN EST parameters adjust - fnet
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x808e);
phy_update(0x14, 0x1200, 0xff00);
phy_out(0x13, 0x8090);
phy_update(0x14, 0xe500, 0xff00);
phy_out(0x13, 0x8092);
phy_update(0x14, 0x9f00, 0xff00);
phy_out(0x1f, 0);
// enable R-tune & PGA-retune function
u16 dout_tapbin = 0;
phy_out(0x1f, 0x0a46);
auto data = phy_in(0x13);
data &= 3;
data <<= 2;
dout_tapbin |= data;
data = phy_in(0x12);
data &= 0xc000;
data >>= 14;
dout_tapbin |= data;
dout_tapbin = ~(dout_tapbin ^ 0x8);
dout_tapbin <<= 12;
dout_tapbin &= 0xf000;
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x827a);
phy_update(0x14, dout_tapbin, 0xf000);
phy_out(0x13, 0x827b);
phy_update(0x14, dout_tapbin, 0xf000);
phy_out(0x13, 0x827c);
phy_update(0x14, dout_tapbin, 0xf000);
phy_out(0x13, 0x827d);
phy_update(0x14, dout_tapbin, 0xf000);
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x811);
phy_update(0x14, 0x800, 0);
phy_out(0x1f, 0x0a42);
phy_update(0x16, 0x2, 0);
phy_out(0x1f, 0);
// enable GPHY 10M
phy_out(0x1f, 0x0a44);
phy_update(0x11, 0x800, 0);
phy_out(0x1f, 0);
// SAR ADC performance
phy_out(0x1f, 0x0bca);
phy_update(0x17, 0x4000, 0x3000);
phy_out(0x1f, 0);
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x803f);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x8047);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x804f);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x8057);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x805f);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x8067);
phy_update(0x14, 0, 0x3000);
phy_out(0x13, 0x806f);
phy_update(0x14, 0, 0x3000);
phy_out(0x1f, 0);
// disable phy pfm mode
phy_out(0x1f, 0x0a44);
phy_update(0x11, 0, 0x80);
phy_out(0x1f, 0);
// Check ALDPS bit, disable it if enabled
phy_out(0x1f, 0x0a43);
if (phy_in(0x10) & 0x4)
phy_update(0x10, 0, 0x4);
phy_out(0x1f, 0);
}
void RTL8168NetworkAdapter::configure_phy_h_2()
{
// FIXME: linux's driver writes a firmware blob to the device at this point, is this needed?
// CHIN EST parameter update
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x808a);
phy_update(0x14, 0x000a, 0x3f);
phy_out(0x1f, 0);
// enable R-tune & PGA-retune function
phy_out(0x1f, 0x0a43);
phy_out(0x13, 0x811);
phy_update(0x14, 0x800, 0);
phy_out(0x1f, 0x0a42);
phy_update(0x16, 0x2, 0);
phy_out(0x1f, 0);
// enable GPHY 10M
phy_out(0x1f, 0x0a44);
phy_update(0x11, 0x800, 0);
phy_out(0x1f, 0);
ocp_out(0xdd02, 0x807d);
auto data = ocp_in(0xdd02);
u16 ioffset_p3 = ((data & 0x80) >> 7);
ioffset_p3 <<= 3;
data = ocp_in(0xdd00);
ioffset_p3 |= ((data & (0xe000)) >> 13);
u16 ioffset_p2 = ((data & (0x1e00)) >> 9);
u16 ioffset_p1 = ((data & (0x1e0)) >> 5);
u16 ioffset_p0 = ((data & 0x10) >> 4);
ioffset_p0 <<= 3;
ioffset_p0 |= (data & (0x7));
data = (ioffset_p3 << 12) | (ioffset_p2 << 8) | (ioffset_p1 << 4) | (ioffset_p0);
if ((ioffset_p3 != 0x0f) || (ioffset_p2 != 0x0f) || (ioffset_p1 != 0x0f) || (ioffset_p0 != 0x0f)) {
phy_out(0x1f, 0x0bcf);
phy_out(0x16, data);
phy_out(0x1f, 0);
}
// Modify rlen (TX LPF corner frequency) level
phy_out(0x1f, 0x0bcd);
data = phy_in(0x16);
data &= 0x000f;
u16 rlen = 0;
if (data > 3)
rlen = data - 3;
data = rlen | (rlen << 4) | (rlen << 8) | (rlen << 12);
phy_out(0x17, data);
phy_out(0x1f, 0x0bcd);
phy_out(0x1f, 0);
// disable phy pfm mode
phy_out(0x1f, 0x0a44);
phy_update(0x11, 0, 0x80);
phy_out(0x1f, 0);
// Check ALDPS bit, disable it if enabled
phy_out(0x1f, 0x0a43);
if (phy_in(0x10) & 0x4)
phy_update(0x10, 0, 0x4);
phy_out(0x1f, 0);
}
void RTL8168NetworkAdapter::rar_exgmac_set()
{
auto mac = mac_address();
const u16 w[] = {
(u16)(mac[0] | (mac[1] << 8)),
(u16)(mac[2] | (mac[3] << 8)),
(u16)(mac[4] | (mac[5] << 8)),
};
const ExgMacRegister exg_mac_registers[] = {
{ 0xe0, ERI_MASK_1111, (u32)(w[0] | (w[1] << 16)) },
{ 0xe4, ERI_MASK_1111, (u32)w[2] },
{ 0xf0, ERI_MASK_1111, (u32)(w[0] << 16) },
{ 0xf4, ERI_MASK_1111, (u32)(w[1] | (w[2] << 16)) },
};
exgmac_out_batch(exg_mac_registers, 4);
}
void RTL8168NetworkAdapter::start_hardware()
{
// unlock config registers
out8(REG_CFG9346, CFG9346_UNLOCK);
// configure the maximum transmit packet size
out16(REG_MTPS, MTPS_JUMBO);
// configure the maximum receive packet size
out16(REG_RMS, RX_BUFFER_SIZE);
auto cplus_command = in16(REG_CPLUS_COMMAND);
cplus_command |= CPLUS_COMMAND_PACKET_CONTROL_DISABLE;
// undocumented magic value???
cplus_command |= 0x1;
out16(REG_CPLUS_COMMAND, cplus_command);
// setup interrupt moderation, magic from vendor (Linux Driver uses 0x5151, *BSD Driver uses 0x5100, RTL Driver use 0x5f51???)
out16(REG_INT_MOD, 0x5151);
// point to tx descriptors
out64(REG_TXADDR, m_tx_descriptors_region->physical_page(0)->paddr().get());
// point to rx descriptors
out64(REG_RXADDR, m_rx_descriptors_region->physical_page(0)->paddr().get());
// configure tx: use the maximum dma transfer size, default interframe gap time.
out32(REG_TXCFG, TXCFG_IFG011 | TXCFG_MAX_DMA_UNLIMITED);
// version specific quirks and tweaks
hardware_quirks();
in8(REG_IMR); // known good read (acts as a barrier)
// relock config registers
out8(REG_CFG9346, CFG9346_NONE);
// enable rx/tx
out8(REG_COMMAND, COMMAND_RX_ENABLE | COMMAND_TX_ENABLE);
// turn on all multicast
out32(REG_MAR0, 0xFFFFFFFF);
out32(REG_MAR4, 0xFFFFFFFF);
// configure rx mode: accept physical (MAC) match, multicast, and broadcast
out32(REG_RXCFG, (in32(REG_RXCFG) & ~RXCFG_READ_MASK) | RXCFG_APM | RXCFG_AM | RXCFG_AB);
// disable early-rx interrupts
out16(REG_MULTIINTR, in16(REG_MULTIINTR) & 0xF000);
}
void RTL8168NetworkAdapter::hardware_quirks()
{
switch (m_version) {
case ChipVersion::Version1:
hardware_quirks_b_1();
return;
case ChipVersion::Version2:
case ChipVersion::Version3:
hardware_quirks_b_2();
return;
case ChipVersion::Version4:
TODO();
case ChipVersion::Version5:
TODO();
case ChipVersion::Version6:
TODO();
case ChipVersion::Version7:
TODO();
case ChipVersion::Version8:
TODO();
case ChipVersion::Version9:
TODO();
case ChipVersion::Version10:
TODO();
case ChipVersion::Version11:
TODO();
case ChipVersion::Version12:
TODO();
case ChipVersion::Version13:
TODO();
case ChipVersion::Version14:
TODO();
case ChipVersion::Version15:
TODO();
case ChipVersion::Version16:
TODO();
case ChipVersion::Version17:
hardware_quirks_e_2();
return;
case ChipVersion::Version18:
TODO();
case ChipVersion::Version19:
TODO();
case ChipVersion::Version20:
TODO();
case ChipVersion::Version21:
TODO();
case ChipVersion::Version22:
TODO();
case ChipVersion::Version23:
TODO();
case ChipVersion::Version24:
TODO();
case ChipVersion::Version25:
TODO();
case ChipVersion::Version26:
TODO();
case ChipVersion::Version27:
TODO();
case ChipVersion::Version28:
TODO();
case ChipVersion::Version29:
case ChipVersion::Version30:
hardware_quirks_h();
return;
default:
VERIFY_NOT_REACHED();
}
}
void RTL8168NetworkAdapter::hardware_quirks_b_1()
{
// disable checked reserved bits
out8(REG_CONFIG3, in8(REG_CONFIG3) & ~CFG3_BEACON_ENABLE);
constexpr u16 version1_cplus_quirks = CPLUS_COMMAND_ENABLE_BIST | CPLUS_COMMAND_MAC_DBGO_OE | CPLUS_COMMAND_FORCE_HALF_DUP | CPLUS_COMMAND_FORCE_RXFLOW_ENABLE | CPLUS_COMMAND_FORCE_TXFLOW_ENABLE | CPLUS_COMMAND_CXPL_DBG_SEL | CPLUS_COMMAND_ASF | CPLUS_COMMAND_PACKET_CONTROL_DISABLE | CPLUS_COMMAND_MAC_DBGO_SEL;
out16(REG_CPLUS_COMMAND, in16(REG_CPLUS_COMMAND) & ~version1_cplus_quirks);
}
void RTL8168NetworkAdapter::hardware_quirks_b_2()
{
hardware_quirks_b_1();
// configure the maximum transmit packet size (again)
out16(REG_MTPS, MTPS_JUMBO);
// disable checked reserved bits
out8(REG_CONFIG4, in8(REG_CONFIG4) & ~1);
}
void RTL8168NetworkAdapter::hardware_quirks_e_2()
{
constexpr EPhyUpdate ephy_info[] = {
{ 0x9, 0, 0x80 },
{ 0x19, 0, 0x224 },
};
csi_enable(CSI_ACCESS_1);
extended_phy_initialize(ephy_info, 2);
// FIXME: MTU performance tweak
eri_out(0xc0, ERI_MASK_0011, 0, ERI_EXGMAC);
eri_out(0xb8, ERI_MASK_0011, 0, ERI_EXGMAC);
eri_out(0xc8, ERI_MASK_1111, 0x100002, ERI_EXGMAC);
eri_out(0xe8, ERI_MASK_1111, 0x100006, ERI_EXGMAC);
eri_out(0xcc, ERI_MASK_1111, 0x50, ERI_EXGMAC);
eri_out(0xd0, ERI_MASK_1111, 0x7ff0060, ERI_EXGMAC);
eri_update(0x1b0, ERI_MASK_0001, 0x10, 0, ERI_EXGMAC);
eri_update(0xd4, ERI_MASK_0011, 0xc00, 0xff00, ERI_EXGMAC);
// Set early TX
out8(REG_MTPS, 0x27);
// FIXME: Disable PCIe clock request
// enable tx auto fifo
out32(REG_TXCFG, in32(REG_TXCFG) | TXCFG_AUTO_FIFO);
out8(REG_MCU, in8(REG_MCU) & ~MCU_NOW_IS_OOB);
// Set EEE LED frequency
out8(REG_EEE_LED, in8(REG_EEE_LED) & ~0x7);
out8(REG_DLLPR, in8(REG_DLLPR) | DLLPR_PFM_ENABLE);
out32(REG_MISC, in32(REG_MISC) | MISC_PWM_ENABLE);
out8(REG_CONFIG5, in8(REG_CONFIG5) & ~CFG5_SPI_ENABLE);
}
void RTL8168NetworkAdapter::hardware_quirks_h()
{
// disable aspm and clock request before accessing extended phy
out8(REG_CONFIG2, in8(REG_CONFIG2) & ~CFG2_CLOCK_REQUEST_ENABLE);
out8(REG_CONFIG5, in8(REG_CONFIG5) & ~CFG5_ASPM_ENABLE);
// initialize extended phy
constexpr EPhyUpdate ephy_info[] = {
{ 0x1e, 0x800, 0x1 },
{ 0x1d, 0, 0x800 },
{ 0x5, 0xffff, 0x2089 },
{ 0x6, 0xffff, 0x5881 },
{ 0x4, 0xffff, 0x154a },
{ 0x1, 0xffff, 0x68b }
};
extended_phy_initialize(ephy_info, 6);
// enable tx auto fifo
out32(REG_TXCFG, in32(REG_TXCFG) | TXCFG_AUTO_FIFO);
// vendor magic values ???
eri_out(0xC8, ERI_MASK_0101, 0x80002, ERI_EXGMAC);
eri_out(0xCC, ERI_MASK_0001, 0x38, ERI_EXGMAC);
eri_out(0xD0, ERI_MASK_0001, 0x48, ERI_EXGMAC);
eri_out(0xE8, ERI_MASK_1111, 0x100006, ERI_EXGMAC);
csi_enable(CSI_ACCESS_1);
// vendor magic values ???
eri_update(0xDC, ERI_MASK_0001, 0x0, 0x1, ERI_EXGMAC);
eri_update(0xDC, ERI_MASK_0001, 0x1, 0x0, ERI_EXGMAC);
eri_update(0xDC, ERI_MASK_1111, 0x10, 0x0, ERI_EXGMAC);
eri_update(0xD4, ERI_MASK_1111, 0x1F00, 0x0, ERI_EXGMAC);
eri_out(0x5F0, ERI_MASK_0011, 0x4F87, ERI_EXGMAC);
// disable rxdv gate
out32(REG_MISC, in32(REG_MISC) & ~MISC_RXDV_GATE_ENABLE);
// set early TX
out8(REG_MTPS, 0x27);
// vendor magic values ???
eri_out(0xC0, ERI_MASK_0011, 0, ERI_EXGMAC);
eri_out(0xB8, ERI_MASK_0011, 0, ERI_EXGMAC);
// Set EEE LED frequency
out8(REG_EEE_LED, in8(REG_EEE_LED) & ~0x7);
out8(REG_DLLPR, in8(REG_DLLPR) & ~DLLPR_PFM_ENABLE);
out8(REG_MISC2, in8(REG_MISC2) & ~MISC2_PFM_D3COLD_ENABLE);
out8(REG_DLLPR, in8(REG_DLLPR) & ~DLLPR_TX_10M_PS_ENABLE);
// vendor magic values ???
eri_update(0x1B0, ERI_MASK_0011, 0, 0x1000, ERI_EXGMAC);
// disable l2l3 state
out8(REG_CONFIG3, in8(REG_CONFIG3) & ~CFG3_READY_TO_L23);
// blackmagic code taken from linux's r8169
phy_out(0x1F, 0x0C42);
auto rg_saw_count = (phy_in(0x13) & 0x3FFF);
phy_out(0x1F, 0);
if (rg_saw_count > 0) {
u16 sw_count_1ms_ini = 16000000 / rg_saw_count;
sw_count_1ms_ini &= 0x0fff;
u32 data = ocp_in(0xd412);
data &= ~0x0fff;
data |= sw_count_1ms_ini;
ocp_out(0xd412, data);
}
u32 data = ocp_in(0xe056);
data &= ~0xf0;
data |= 0x70;
ocp_out(0xe056, data);
data = ocp_in(0xe052);
data &= ~0x6000;
data |= 0x8008;
ocp_out(0xe052, data);
data = ocp_in(0xe0d6);
data &= ~0x1ff;
data |= 0x17f;
ocp_out(0xe0d6, data);
data = ocp_in(0xd420);
data &= ~0x0fff;
data |= 0x47f;
ocp_out(0xd420, data);
ocp_out(0xe63e, 0x1);
ocp_out(0xe63e, 0);
ocp_out(0xc094, 0);
ocp_out(0xc09e, 0);
}
void RTL8168NetworkAdapter::set_phy_speed()
{
// wakeup phy
phy_out(0x1F, 0);
// advertise all available features to get best connection possible
auto auto_negotiation_advertisement = phy_in(PHY_REG_ANAR);
auto_negotiation_advertisement |= ADVERTISE_10_HALF; // 10 mbit half duplex
auto_negotiation_advertisement |= ADVERTISE_10_FULL; // 10 mbit full duplex
auto_negotiation_advertisement |= ADVERTISE_100_HALF; // 100 mbit half duplex
auto_negotiation_advertisement |= ADVERTISE_100_FULL; // 100 mbit full duplex
auto_negotiation_advertisement |= ADVERTISE_PAUSE_CAP; // capable of pause flow control
auto_negotiation_advertisement |= ADVERTISE_PAUSE_ASYM; // capable of asymmetric pause flow control
phy_out(PHY_REG_ANAR, auto_negotiation_advertisement);
auto gigabyte_control = phy_in(PHY_REG_GBCR);
gigabyte_control |= ADVERTISE_1000_HALF; // 1000 mbit half dulpex
gigabyte_control |= ADVERTISE_1000_FULL; // 1000 mbit full duplex
phy_out(PHY_REG_GBCR, gigabyte_control);
// restart auto-negotation with set advertisements
phy_out(PHY_REG_BMCR, BMCR_AUTO_NEGOTIATE | BMCR_RESTART_AUTO_NEGOTIATE);
}
UNMAP_AFTER_INIT void RTL8168NetworkAdapter::initialize_rx_descriptors()
{
auto* rx_descriptors = (RXDescriptor*)m_rx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_rx_descriptors; ++i) {
auto& descriptor = rx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(RX_BUFFER_SIZE), "RTL8168 RX buffer", Memory::Region::Access::ReadWrite);
VERIFY(region);
memset(region->vaddr().as_ptr(), 0, region->size()); // MM already zeros out newly allocated pages, but we do it again in case that ever changes
m_rx_buffers_regions.append(region.release_nonnull());
descriptor.buffer_size = RX_BUFFER_SIZE;
descriptor.flags = RXDescriptor::Ownership; // let the NIC know it can use this descriptor
auto physical_address = m_rx_buffers_regions[i].physical_page(0)->paddr().get();
descriptor.buffer_address_low = physical_address & 0xFFFFFFFF;
descriptor.buffer_address_high = (u64)physical_address >> 32; // cast to prevent shift count >= with of type warnings in 32 bit systems
}
rx_descriptors[number_of_rx_descriptors - 1].flags = rx_descriptors[number_of_rx_descriptors - 1].flags | RXDescriptor::EndOfRing;
}
UNMAP_AFTER_INIT void RTL8168NetworkAdapter::initialize_tx_descriptors()
{
auto* tx_descriptors = (TXDescriptor*)m_tx_descriptors_region->vaddr().as_ptr();
for (size_t i = 0; i < number_of_tx_descriptors; ++i) {
auto& descriptor = tx_descriptors[i];
auto region = MM.allocate_contiguous_kernel_region(Memory::page_round_up(TX_BUFFER_SIZE), "RTL8168 TX buffer", Memory::Region::Access::ReadWrite);
VERIFY(region);
memset(region->vaddr().as_ptr(), 0, region->size()); // MM already zeros out newly allocated pages, but we do it again in case that ever changes
m_tx_buffers_regions.append(region.release_nonnull());
descriptor.flags = TXDescriptor::FirstSegment | TXDescriptor::LastSegment;
auto physical_address = m_tx_buffers_regions[i].physical_page(0)->paddr().get();
descriptor.buffer_address_low = physical_address & 0xFFFFFFFF;
descriptor.buffer_address_high = (u64)physical_address >> 32;
}
tx_descriptors[number_of_tx_descriptors - 1].flags = tx_descriptors[number_of_tx_descriptors - 1].flags | TXDescriptor::EndOfRing;
}
UNMAP_AFTER_INIT RTL8168NetworkAdapter::~RTL8168NetworkAdapter()
{
}
bool RTL8168NetworkAdapter::handle_irq(const RegisterState&)
{
bool was_handled = false;
for (;;) {
int status = in16(REG_ISR);
out16(REG_ISR, status);
m_entropy_source.add_random_event(status);
dbgln_if(RTL8168_DEBUG, "RTL8168: handle_irq status={:#04x}", status);
if ((status & (INT_RXOK | INT_RXERR | INT_TXOK | INT_TXERR | INT_RX_OVERFLOW | INT_LINK_CHANGE | INT_RX_FIFO_OVERFLOW | INT_SYS_ERR)) == 0)
break;
was_handled = true;
if (status & INT_RXOK) {
dbgln_if(RTL8168_DEBUG, "RTL8168: RX ready");
receive();
}
if (status & INT_RXERR) {
dbgln_if(RTL8168_DEBUG, "RTL8168: RX error - invalid packet");
}
if (status & INT_TXOK) {
dbgln_if(RTL8168_DEBUG, "RTL8168: TX complete");
m_wait_queue.wake_one();
}
if (status & INT_TXERR) {
dbgln_if(RTL8168_DEBUG, "RTL8168: TX error - invalid packet");
}
if (status & INT_RX_OVERFLOW) {
dmesgln("RTL8168: RX descriptor unavailable (packet lost)");
receive();
}
if (status & INT_LINK_CHANGE) {
m_link_up = (in8(REG_PHYSTATUS) & PHY_LINK_STATUS) != 0;
dmesgln("RTL8168: Link status changed up={}", m_link_up);
}
if (status & INT_RX_FIFO_OVERFLOW) {
dmesgln("RTL8168: RX FIFO overflow");
receive();
}
if (status & INT_SYS_ERR) {
dmesgln("RTL8168: Fatal system error");
}
}
return was_handled;
}
void RTL8168NetworkAdapter::reset()
{
out8(REG_COMMAND, COMMAND_RESET);
while ((in8(REG_COMMAND) & COMMAND_RESET) != 0)
;
}
UNMAP_AFTER_INIT void RTL8168NetworkAdapter::read_mac_address()
{
MACAddress mac {};
for (int i = 0; i < 6; i++)
mac[i] = in8(REG_MAC + i);
set_mac_address(mac);
}
void RTL8168NetworkAdapter::send_raw(ReadonlyBytes payload)
{
dbgln_if(RTL8168_DEBUG, "RTL8168: send_raw length={}", payload.size());
if (payload.size() > TX_BUFFER_SIZE) {
dmesgln("RTL8168: Packet was too big; discarding");
return;
}
auto* tx_descriptors = (TXDescriptor*)m_tx_descriptors_region->vaddr().as_ptr();
auto& free_descriptor = tx_descriptors[m_tx_free_index];
if ((free_descriptor.flags & TXDescriptor::Ownership) != 0) {
dbgln_if(RTL8168_DEBUG, "RTL8168: No free TX buffers, sleeping until one is available");
m_wait_queue.wait_forever("RTL8168NetworkAdapter");
return send_raw(payload);
// if we woke up a TX descriptor is guaranteed to be available, so this should never recurse more than once
// but this can probably be done more cleanly
}
dbgln_if(RTL8168_DEBUG, "RTL8168: Chose descriptor {}", m_tx_free_index);
memcpy(m_tx_buffers_regions[m_tx_free_index].vaddr().as_ptr(), payload.data(), payload.size());
m_tx_free_index = (m_tx_free_index + 1) % number_of_tx_descriptors;
free_descriptor.frame_length = payload.size() & 0x3FFF;
free_descriptor.flags = free_descriptor.flags | TXDescriptor::Ownership;
out8(REG_TXSTART, TXSTART_START); // FIXME: this shouldnt be done so often, we should look into doing this using the watchdog timer
}
void RTL8168NetworkAdapter::receive()
{
auto* rx_descriptors = (RXDescriptor*)m_rx_descriptors_region->vaddr().as_ptr();
for (u16 i = 0; i < number_of_rx_descriptors; ++i) {
auto descriptor_index = (m_rx_free_index + i) % number_of_rx_descriptors;
auto& descriptor = rx_descriptors[descriptor_index];
if ((descriptor.flags & RXDescriptor::Ownership) != 0) {
m_rx_free_index = descriptor_index;
break;
}
u16 flags = descriptor.flags;
u16 length = descriptor.buffer_size & 0x3FFF;
dbgln_if(RTL8168_DEBUG, "RTL8168: receive, flags={:#04x}, length={}, descriptor={}", flags, length, descriptor_index);
if (length > RX_BUFFER_SIZE || (flags & RXDescriptor::ErrorSummary) != 0) {
dmesgln("RTL8168: receive got bad packet, flags={:#04x}, length={}", flags, length);
} else if ((flags & RXDescriptor::FirstSegment) != 0 && (flags & RXDescriptor::LastSegment) == 0) {
VERIFY_NOT_REACHED();
// Our maximum received packet size is smaller than the descriptor buffer size, so packets should never be segmented
// if this happens on a real NIC it might not respect that, and we will have to support packet segmentation
} else {
did_receive({ m_rx_buffers_regions[descriptor_index].vaddr().as_ptr(), length });
}
descriptor.buffer_size = RX_BUFFER_SIZE;
flags = RXDescriptor::Ownership;
if (descriptor_index == number_of_rx_descriptors - 1)
flags |= RXDescriptor::EndOfRing;
descriptor.flags = flags; // let the NIC know it can use this descriptor again
}
}
void RTL8168NetworkAdapter::out8(u16 address, u8 data)
{
m_io_base.offset(address).out(data);
}
void RTL8168NetworkAdapter::out16(u16 address, u16 data)
{
m_io_base.offset(address).out(data);
}
void RTL8168NetworkAdapter::out32(u16 address, u32 data)
{
m_io_base.offset(address).out(data);
}
void RTL8168NetworkAdapter::out64(u16 address, u64 data)
{
// ORDER MATTERS: Some NICs require the high part of the address to be written first
m_io_base.offset(address + 4).out((u32)(data >> 32));
m_io_base.offset(address).out((u32)(data & 0xFFFFFFFF));
}
u8 RTL8168NetworkAdapter::in8(u16 address)
{
return m_io_base.offset(address).in<u8>();
}
u16 RTL8168NetworkAdapter::in16(u16 address)
{
return m_io_base.offset(address).in<u16>();
}
u32 RTL8168NetworkAdapter::in32(u16 address)
{
return m_io_base.offset(address).in<u32>();
}
void RTL8168NetworkAdapter::phy_out(u8 address, u16 data)
{
if (m_version == ChipVersion::Version11) {
TODO();
} else if (m_version == ChipVersion::Version12 || m_version == ChipVersion::Version13) {
TODO();
} else if (m_version >= ChipVersion::Version21) {
if (address == 0x1F) {
m_ocp_base_address = data ? data << 4 : OCP_STANDARD_PHY_BASE;
return;
}
if (m_ocp_base_address != OCP_STANDARD_PHY_BASE)
address -= 0x10;
ocp_phy_out(m_ocp_base_address + address * 2, data);
} else {
VERIFY((address & 0xE0) == 0); // register address is only 5 bit
out32(REG_PHYACCESS, PHY_FLAG | (address & 0x1F) << 16 | (data & 0xFFFF));
while ((in32(REG_PHYACCESS) & PHY_FLAG) != 0)
;
}
}
u16 RTL8168NetworkAdapter::phy_in(u8 address)
{
if (m_version == ChipVersion::Version11) {
TODO();
} else if (m_version == ChipVersion::Version12 || m_version == ChipVersion::Version13) {
TODO();
} else if (m_version >= ChipVersion::Version21) {
if (m_ocp_base_address != OCP_STANDARD_PHY_BASE)
address -= 0x10;
return ocp_phy_in(m_ocp_base_address + address * 2);
} else {
VERIFY((address & 0xE0) == 0); // register address is only 5 bit
out32(REG_PHYACCESS, (address & 0x1F) << 16);
while ((in32(REG_PHYACCESS) & PHY_FLAG) == 0)
;
return in32(REG_PHYACCESS) & 0xFFFF;
}
}
void RTL8168NetworkAdapter::phy_update(u32 address, u32 set, u32 clear)
{
auto value = phy_in(address);
phy_out(address, (value & ~clear) | set);
}
void RTL8168NetworkAdapter::phy_out_batch(const PhyRegister phy_registers[], size_t length)
{
for (size_t i = 0; i < length; i++) {
phy_out(phy_registers[i].address, phy_registers[i].data);
}
}
void RTL8168NetworkAdapter::extended_phy_out(u8 address, u16 data)
{
VERIFY((address & 0xE0) == 0); // register address is only 5 bit
out32(REG_EPHYACCESS, EPHY_FLAG | (address & 0x1F) << 16 | (data & 0xFFFF));
while ((in32(REG_EPHYACCESS) & EPHY_FLAG) != 0)
;
}
u16 RTL8168NetworkAdapter::extended_phy_in(u8 address)
{
VERIFY((address & 0xE0) == 0); // register address is only 5 bit
out32(REG_EPHYACCESS, (address & 0x1F) << 16);
while ((in32(REG_EPHYACCESS) & EPHY_FLAG) == 0)
;
return in32(REG_EPHYACCESS) & 0xFFFF;
}
void RTL8168NetworkAdapter::extended_phy_initialize(const EPhyUpdate ephy_info[], size_t length)
{
for (size_t i = 0; i < length; i++) {
auto updated_value = (extended_phy_in(ephy_info[i].offset) & ~ephy_info[i].clear) | ephy_info[i].set;
extended_phy_out(ephy_info[i].offset, updated_value);
}
}
void RTL8168NetworkAdapter::eri_out(u32 address, u32 mask, u32 data, u32 type)
{
out32(REG_ERI_DATA, data);
out32(REG_ERI_ADDR, ERI_FLAG | type | mask | address);
while ((in32(REG_ERI_ADDR) & ERI_FLAG) != 0)
;
}
u32 RTL8168NetworkAdapter::eri_in(u32 address, u32 type)
{
out32(REG_ERI_ADDR, type | ERI_MASK_1111 | address);
while ((in32(REG_ERI_ADDR) & ERI_FLAG) == 0)
;
return in32(REG_ERI_DATA);
}
void RTL8168NetworkAdapter::eri_update(u32 address, u32 mask, u32 set, u32 clear, u32 type)
{
auto value = eri_in(address, type);
eri_out(address, mask, (value & ~clear) | set, type);
}
void RTL8168NetworkAdapter::exgmac_out_batch(const ExgMacRegister exgmac_registers[], size_t length)
{
for (size_t i = 0; i < length; i++) {
eri_out(exgmac_registers[i].address, exgmac_registers[i].mask, exgmac_registers[i].value, ERI_EXGMAC);
}
}
void RTL8168NetworkAdapter::csi_out(u32 address, u32 data)
{
VERIFY(m_version >= ChipVersion::Version4);
out32(REG_CSI_DATA, data);
auto modifier = CSI_BYTE_ENABLE;
if (m_version == ChipVersion::Version20) {
modifier |= CSI_FUNC_NIC;
} else if (m_version == ChipVersion::Version26) {
modifier |= CSI_FUNC_NIC2;
}
out32(REG_CSI_ADDR, CSI_FLAG | (address & 0xFFF) | modifier);
while ((in32(REG_CSI_ADDR) & CSI_FLAG) != 0)
;
}
u32 RTL8168NetworkAdapter::csi_in(u32 address)
{
VERIFY(m_version >= ChipVersion::Version4);
auto modifier = CSI_BYTE_ENABLE;
if (m_version == ChipVersion::Version20) {
modifier |= CSI_FUNC_NIC;
} else if (m_version == ChipVersion::Version26) {
modifier |= CSI_FUNC_NIC2;
}
out32(REG_CSI_ADDR, (address & 0xFFF) | modifier);
while ((in32(REG_CSI_ADDR) & CSI_FLAG) == 0)
;
return in32(REG_CSI_DATA) & 0xFFFF;
}
void RTL8168NetworkAdapter::csi_enable(u32 bits)
{
auto csi = csi_in(0x70c) & 0x00ffffff;
csi_out(0x70c, csi | bits);
}
void RTL8168NetworkAdapter::ocp_out(u32 address, u32 data)
{
VERIFY((address & 0xFFFF0001) == 0);
out32(REG_OCP_DATA, OCP_FLAG | address << 15 | data);
}
u32 RTL8168NetworkAdapter::ocp_in(u32 address)
{
VERIFY((address & 0xFFFF0001) == 0);
out32(REG_OCP_DATA, address << 15);
return in32(REG_OCP_DATA);
}
void RTL8168NetworkAdapter::ocp_phy_out(u32 address, u32 data)
{
VERIFY((address & 0xFFFF0001) == 0);
out32(REG_GPHY_OCP, OCP_FLAG | (address << 15) | data);
while ((in32(REG_GPHY_OCP) & OCP_FLAG) != 0)
;
}
u16 RTL8168NetworkAdapter::ocp_phy_in(u32 address)
{
VERIFY((address & 0xFFFF0001) == 0);
out32(REG_GPHY_OCP, address << 15);
while ((in32(REG_GPHY_OCP) & OCP_FLAG) == 0)
;
return in32(REG_GPHY_OCP) & 0xFFFF;
}
void RTL8168NetworkAdapter::identify_chip_version()
{
auto transmit_config = in32(REG_TXCFG);
auto registers = transmit_config & 0x7c800000;
auto hw_version_id = transmit_config & 0x700000;
m_version_uncertain = false;
switch (registers) {
case 0x30000000:
m_version = ChipVersion::Version1;
break;
case 0x38000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version2;
} else if (hw_version_id == 0x500000) {
m_version = ChipVersion::Version3;
} else {
m_version = ChipVersion::Version3;
m_version_uncertain = true;
}
break;
case 0x3C000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version4;
} else if (hw_version_id == 0x200000) {
m_version = ChipVersion::Version5;
} else if (hw_version_id == 0x400000) {
m_version = ChipVersion::Version6;
} else {
m_version = ChipVersion::Version6;
m_version_uncertain = true;
}
break;
case 0x3C800000:
if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version7;
} else if (hw_version_id == 0x300000) {
m_version = ChipVersion::Version8;
} else {
m_version = ChipVersion::Version8;
m_version_uncertain = true;
}
break;
case 0x28000000:
if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version9;
} else if (hw_version_id == 0x300000) {
m_version = ChipVersion::Version10;
} else {
m_version = ChipVersion::Version10;
m_version_uncertain = true;
}
break;
case 0x28800000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version11;
} else if (hw_version_id == 0x200000) {
m_version = ChipVersion::Version12;
} else if (hw_version_id == 0x300000) {
m_version = ChipVersion::Version13;
} else {
m_version = ChipVersion::Version13;
m_version_uncertain = true;
}
break;
case 0x2C000000:
if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version14;
} else if (hw_version_id == 0x200000) {
m_version = ChipVersion::Version15;
} else {
m_version = ChipVersion::Version15;
m_version_uncertain = true;
}
break;
case 0x2C800000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version16;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version17;
} else {
m_version = ChipVersion::Version17;
m_version_uncertain = true;
}
break;
case 0x48000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version18;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version19;
} else {
m_version = ChipVersion::Version19;
m_version_uncertain = true;
}
break;
case 0x48800000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version20;
} else {
m_version = ChipVersion::Version20;
m_version_uncertain = true;
}
break;
case 0x4C000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version21;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version22;
} else {
m_version = ChipVersion::Version22;
m_version_uncertain = true;
}
break;
case 0x50000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version23;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version27;
} else if (hw_version_id == 0x200000) {
m_version = ChipVersion::Version28;
} else {
m_version = ChipVersion::Version28;
m_version_uncertain = true;
}
break;
case 0x50800000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version24;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version25;
} else {
m_version = ChipVersion::Version25;
m_version_uncertain = true;
}
break;
case 0x5C800000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version26;
} else {
m_version = ChipVersion::Version26;
m_version_uncertain = true;
}
break;
case 0x54000000:
if (hw_version_id == 00000) {
m_version = ChipVersion::Version29;
} else if (hw_version_id == 0x100000) {
m_version = ChipVersion::Version30;
} else {
m_version = ChipVersion::Version30;
m_version_uncertain = true;
}
break;
default:
dbgln_if(RTL8168_DEBUG, "Unable to determine device version: {:#04x}", registers);
m_version = ChipVersion::Unknown;
m_version_uncertain = true;
break;
}
}
String RTL8168NetworkAdapter::possible_device_name()
{
switch (m_version) { // We are following *BSD's versioning scheme, the comments note linux's versioning scheme, but they dont match up exactly
case ChipVersion::Version1:
case ChipVersion::Version2:
case ChipVersion::Version3:
return "RTL8168B/8111B"; // 11, 12, 17
case ChipVersion::Version4:
case ChipVersion::Version5:
case ChipVersion::Version6:
return "RTL8168C/8111C"; // 19, 20, 21, 22
case ChipVersion::Version7:
case ChipVersion::Version8:
return "RTL8168CP/8111CP"; // 18, 23, 24
case ChipVersion::Version9:
case ChipVersion::Version10:
return "RTL8168D/8111D"; // 25, 26
case ChipVersion::Version11:
case ChipVersion::Version12:
case ChipVersion::Version13:
return "RTL8168DP/8111DP"; // 27, 28, 31
case ChipVersion::Version14:
case ChipVersion::Version15:
return "RTL8168E/8111E"; // 32, 33
case ChipVersion::Version16:
case ChipVersion::Version17:
return "RTL8168E-VL/8111E-VL"; // 34
case ChipVersion::Version18:
case ChipVersion::Version19:
return "RTL8168F/8111F"; // 35, 36
case ChipVersion::Version20:
return "RTL8411"; // 38
case ChipVersion::Version21:
case ChipVersion::Version22:
return "RTL8168G/8111G"; // 40, 41, 42
case ChipVersion::Version23:
case ChipVersion::Version27:
case ChipVersion::Version28:
return "RTL8168EP/8111EP"; // 49, 50, 51
case ChipVersion::Version24:
case ChipVersion::Version25:
return "RTL8168GU/8111GU"; // ???
case ChipVersion::Version26:
return "RTL8411B"; // 44
case ChipVersion::Version29:
case ChipVersion::Version30:
return "RTL8168H/8111H"; // 45, 46
case ChipVersion::Unknown:
return "Unknown";
}
VERIFY_NOT_REACHED();
}
bool RTL8168NetworkAdapter::link_full_duplex()
{
u8 phystatus = in8(REG_PHYSTATUS);
return !!(phystatus & (PHYSTATUS_FULLDUP | PHYSTATUS_1000MF));
}
i32 RTL8168NetworkAdapter::link_speed()
{
if (!link_up())
return NetworkAdapter::LINKSPEED_INVALID;
u8 phystatus = in8(REG_PHYSTATUS);
if (phystatus & PHYSTATUS_1000MF)
return 1000;
if (phystatus & PHYSTATUS_100M)
return 100;
if (phystatus & PHYSTATUS_10M)
return 10;
return NetworkAdapter::LINKSPEED_INVALID;
}
}