serenity/Kernel/Process.cpp
Tom 046d6855f5 Kernel: Move block condition evaluation out of the Scheduler
This makes the Scheduler a lot leaner by not having to evaluate
block conditions every time it is invoked. Instead evaluate them as
the states change, and unblock threads at that point.

This also implements some more waitid/waitpid/wait features and
behavior. For example, WUNTRACED and WNOWAIT are now supported. And
wait will now not return EINTR when SIGCHLD is delivered at the
same time.
2020-11-30 13:17:02 +01:00

871 lines
28 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Demangle.h>
#include <AK/QuickSort.h>
#include <AK/StdLibExtras.h>
#include <AK/StringBuilder.h>
#include <AK/Time.h>
#include <AK/Types.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/FileSystem/Custody.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KBufferBuilder.h>
#include <Kernel/KSyms.h>
#include <Kernel/Module.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/Process.h>
#include <Kernel/SharedBuffer.h>
#include <Kernel/StdLib.h>
#include <Kernel/TTY/TTY.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/PageDirectory.h>
#include <Kernel/VM/SharedInodeVMObject.h>
#include <LibC/errno_numbers.h>
#include <LibC/limits.h>
#include <LibELF/Loader.h>
//#define DEBUG_IO
//#define DEBUG_POLL_SELECT
//#define MM_DEBUG
//#define PROCESS_DEBUG
//#define SIGNAL_DEBUG
namespace Kernel {
static void create_signal_trampolines();
RecursiveSpinLock g_processes_lock;
static Atomic<pid_t> next_pid;
InlineLinkedList<Process>* g_processes;
String* g_hostname;
Lock* g_hostname_lock;
VirtualAddress g_return_to_ring3_from_signal_trampoline;
HashMap<String, OwnPtr<Module>>* g_modules;
ProcessID Process::allocate_pid()
{
// Overflow is UB, and negative PIDs wreck havoc.
// TODO: Handle PID overflow
// For example: Use an Atomic<u32>, mask the most significant bit,
// retry if PID is already taken as a PID, taken as a TID,
// takes as a PGID, taken as a SID, or zero.
return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
void Process::initialize()
{
g_modules = new HashMap<String, OwnPtr<Module>>;
next_pid.store(0, AK::MemoryOrder::memory_order_release);
g_processes = new InlineLinkedList<Process>;
g_process_groups = new InlineLinkedList<ProcessGroup>;
g_hostname = new String("courage");
g_hostname_lock = new Lock;
create_signal_trampolines();
}
Vector<ProcessID> Process::all_pids()
{
Vector<ProcessID> pids;
ScopedSpinLock lock(g_processes_lock);
pids.ensure_capacity((int)g_processes->size_slow());
for (auto& process : *g_processes)
pids.append(process.pid());
return pids;
}
NonnullRefPtrVector<Process> Process::all_processes()
{
NonnullRefPtrVector<Process> processes;
ScopedSpinLock lock(g_processes_lock);
processes.ensure_capacity((int)g_processes->size_slow());
for (auto& process : *g_processes)
processes.append(NonnullRefPtr<Process>(process));
return processes;
}
bool Process::in_group(gid_t gid) const
{
return m_gid == gid || m_extra_gids.contains_slow(gid);
}
Range Process::allocate_range(VirtualAddress vaddr, size_t size, size_t alignment)
{
vaddr.mask(PAGE_MASK);
size = PAGE_ROUND_UP(size);
if (vaddr.is_null())
return page_directory().range_allocator().allocate_anywhere(size, alignment);
return page_directory().range_allocator().allocate_specific(vaddr, size);
}
Region& Process::allocate_split_region(const Region& source_region, const Range& range, size_t offset_in_vmobject)
{
auto& region = add_region(Region::create_user_accessible(range, source_region.vmobject(), offset_in_vmobject, source_region.name(), source_region.access()));
region.set_mmap(source_region.is_mmap());
region.set_stack(source_region.is_stack());
size_t page_offset_in_source_region = (offset_in_vmobject - source_region.offset_in_vmobject()) / PAGE_SIZE;
for (size_t i = 0; i < region.page_count(); ++i) {
if (source_region.should_cow(page_offset_in_source_region + i))
region.set_should_cow(i, true);
}
return region;
}
Region* Process::allocate_region(const Range& range, const String& name, int prot, bool should_commit)
{
ASSERT(range.is_valid());
auto vmobject = AnonymousVMObject::create_with_size(range.size());
auto region = Region::create_user_accessible(range, vmobject, 0, name, prot_to_region_access_flags(prot));
region->map(page_directory());
if (should_commit && !region->commit())
return nullptr;
return &add_region(move(region));
}
Region* Process::allocate_region(VirtualAddress vaddr, size_t size, const String& name, int prot, bool should_commit)
{
auto range = allocate_range(vaddr, size);
if (!range.is_valid())
return nullptr;
return allocate_region(range, name, prot, should_commit);
}
Region* Process::allocate_region_with_vmobject(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, int prot)
{
ASSERT(range.is_valid());
size_t end_in_vmobject = offset_in_vmobject + range.size();
if (end_in_vmobject <= offset_in_vmobject) {
dbg() << "allocate_region_with_vmobject: Overflow (offset + size)";
return nullptr;
}
if (offset_in_vmobject >= vmobject->size()) {
dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an offset past the end of its VMObject.";
return nullptr;
}
if (end_in_vmobject > vmobject->size()) {
dbg() << "allocate_region_with_vmobject: Attempt to allocate a region with an end past the end of its VMObject.";
return nullptr;
}
offset_in_vmobject &= PAGE_MASK;
auto& region = add_region(Region::create_user_accessible(range, move(vmobject), offset_in_vmobject, name, prot_to_region_access_flags(prot)));
region.map(page_directory());
return &region;
}
Region* Process::allocate_region_with_vmobject(VirtualAddress vaddr, size_t size, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, int prot)
{
auto range = allocate_range(vaddr, size);
if (!range.is_valid())
return nullptr;
return allocate_region_with_vmobject(range, move(vmobject), offset_in_vmobject, name, prot);
}
bool Process::deallocate_region(Region& region)
{
OwnPtr<Region> region_protector;
ScopedSpinLock lock(m_lock);
if (m_region_lookup_cache.region.unsafe_ptr() == &region)
m_region_lookup_cache.region = nullptr;
for (size_t i = 0; i < m_regions.size(); ++i) {
if (&m_regions[i] == &region) {
region_protector = m_regions.unstable_take(i);
return true;
}
}
return false;
}
Region* Process::find_region_from_range(const Range& range)
{
ScopedSpinLock lock(m_lock);
if (m_region_lookup_cache.range == range && m_region_lookup_cache.region)
return m_region_lookup_cache.region.unsafe_ptr();
size_t size = PAGE_ROUND_UP(range.size());
for (auto& region : m_regions) {
if (region.vaddr() == range.base() && region.size() == size) {
m_region_lookup_cache.range = range;
m_region_lookup_cache.region = region;
return &region;
}
}
return nullptr;
}
Region* Process::find_region_containing(const Range& range)
{
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
if (region.contains(range))
return &region;
}
return nullptr;
}
void Process::kill_threads_except_self()
{
InterruptDisabler disabler;
if (thread_count() <= 1)
return;
auto current_thread = Thread::current();
for_each_thread([&](Thread& thread) {
if (&thread == current_thread
|| thread.state() == Thread::State::Dead
|| thread.state() == Thread::State::Dying)
return IterationDecision::Continue;
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
return IterationDecision::Continue;
});
big_lock().clear_waiters();
}
void Process::kill_all_threads()
{
for_each_thread([&](Thread& thread) {
// We need to detach this thread in case it hasn't been joined
thread.detach();
thread.set_should_die();
return IterationDecision::Continue;
});
}
RefPtr<Process> Process::create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t uid, gid_t gid, ProcessID parent_pid, int& error, Vector<String>&& arguments, Vector<String>&& environment, TTY* tty)
{
auto parts = path.split('/');
if (arguments.is_empty()) {
arguments.append(parts.last());
}
RefPtr<Custody> cwd;
RefPtr<Custody> root;
{
ScopedSpinLock lock(g_processes_lock);
if (auto parent = Process::from_pid(parent_pid)) {
cwd = parent->m_cwd;
root = parent->m_root_directory;
}
}
if (!cwd)
cwd = VFS::the().root_custody();
if (!root)
root = VFS::the().root_custody();
auto process = adopt(*new Process(first_thread, parts.take_last(), uid, gid, parent_pid, false, move(cwd), nullptr, tty));
process->m_fds.resize(m_max_open_file_descriptors);
auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : NullDevice::the();
auto description = device_to_use_as_tty.open(O_RDWR).value();
process->m_fds[0].set(*description);
process->m_fds[1].set(*description);
process->m_fds[2].set(*description);
error = process->exec(path, move(arguments), move(environment));
if (error != 0) {
dbg() << "Failed to exec " << path << ": " << error;
first_thread = nullptr;
return {};
}
{
ScopedSpinLock lock(g_processes_lock);
g_processes->prepend(process);
process->ref();
}
error = 0;
return process;
}
NonnullRefPtr<Process> Process::create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data, u32 affinity)
{
auto process = adopt(*new Process(first_thread, move(name), (uid_t)0, (gid_t)0, ProcessID(0), true));
first_thread->tss().eip = (FlatPtr)entry;
first_thread->tss().esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
if (process->pid() != 0) {
ScopedSpinLock lock(g_processes_lock);
g_processes->prepend(process);
process->ref();
}
ScopedSpinLock lock(g_scheduler_lock);
first_thread->set_affinity(affinity);
first_thread->set_state(Thread::State::Runnable);
return process;
}
Process::Process(RefPtr<Thread>& first_thread, const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty, Process* fork_parent)
: m_name(move(name))
, m_pid(allocate_pid())
, m_euid(uid)
, m_egid(gid)
, m_uid(uid)
, m_gid(gid)
, m_suid(uid)
, m_sgid(gid)
, m_is_kernel_process(is_kernel_process)
, m_executable(move(executable))
, m_cwd(move(cwd))
, m_tty(tty)
, m_ppid(ppid)
, m_wait_block_condition(*this)
{
#ifdef PROCESS_DEBUG
dbg() << "Created new process " << m_name << "(" << m_pid.value() << ")";
#endif
m_page_directory = PageDirectory::create_for_userspace(*this, fork_parent ? &fork_parent->page_directory().range_allocator() : nullptr);
#ifdef MM_DEBUG
dbg() << "Process " << pid().value() << " ctor: PD=" << m_page_directory.ptr() << " created";
#endif
if (fork_parent) {
// NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process.
first_thread = Thread::current()->clone(*this);
} else {
// NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.)
first_thread = adopt(*new Thread(*this));
first_thread->detach();
}
}
Process::~Process()
{
ASSERT(thread_count() == 0); // all threads should have been finalized
{
ScopedSpinLock processses_lock(g_processes_lock);
if (prev() || next())
g_processes->remove(this);
}
}
void Process::dump_regions()
{
klog() << "Process regions:";
klog() << "BEGIN END SIZE ACCESS NAME";
ScopedSpinLock lock(m_lock);
Vector<Region*> sorted_regions;
sorted_regions.ensure_capacity(m_regions.size());
for (auto& region : m_regions)
sorted_regions.append(&region);
quick_sort(sorted_regions, [](auto& a, auto& b) {
return a->vaddr() < b->vaddr();
});
for (auto& sorted_region : sorted_regions) {
auto& region = *sorted_region;
klog() << String::format("%08x", region.vaddr().get()) << " -- " << String::format("%08x", region.vaddr().offset(region.size() - 1).get()) << " " << String::format("%08x", region.size()) << " " << (region.is_readable() ? 'R' : ' ') << (region.is_writable() ? 'W' : ' ') << (region.is_executable() ? 'X' : ' ') << (region.is_shared() ? 'S' : ' ') << (region.is_stack() ? 'T' : ' ') << (region.vmobject().is_purgeable() ? 'P' : ' ') << " " << region.name().characters();
}
MM.dump_kernel_regions();
}
// Make sure the compiler doesn't "optimize away" this function:
extern void signal_trampoline_dummy(void);
void signal_trampoline_dummy(void)
{
// The trampoline preserves the current eax, pushes the signal code and
// then calls the signal handler. We do this because, when interrupting a
// blocking syscall, that syscall may return some special error code in eax;
// This error code would likely be overwritten by the signal handler, so it's
// necessary to preserve it here.
asm(
".intel_syntax noprefix\n"
"asm_signal_trampoline:\n"
"push ebp\n"
"mov ebp, esp\n"
"push eax\n" // we have to store eax 'cause it might be the return value from a syscall
"sub esp, 4\n" // align the stack to 16 bytes
"mov eax, [ebp+12]\n" // push the signal code
"push eax\n"
"call [ebp+8]\n" // call the signal handler
"add esp, 8\n"
"mov eax, %P0\n"
"int 0x82\n" // sigreturn syscall
"asm_signal_trampoline_end:\n"
".att_syntax" ::"i"(Syscall::SC_sigreturn));
}
extern "C" void asm_signal_trampoline(void);
extern "C" void asm_signal_trampoline_end(void);
void create_signal_trampolines()
{
InterruptDisabler disabler;
// NOTE: We leak this region.
auto* trampoline_region = MM.allocate_user_accessible_kernel_region(PAGE_SIZE, "Signal trampolines", Region::Access::Read | Region::Access::Write | Region::Access::Execute, false).leak_ptr();
g_return_to_ring3_from_signal_trampoline = trampoline_region->vaddr();
u8* trampoline = (u8*)asm_signal_trampoline;
u8* trampoline_end = (u8*)asm_signal_trampoline_end;
size_t trampoline_size = trampoline_end - trampoline;
{
SmapDisabler disabler;
u8* code_ptr = (u8*)trampoline_region->vaddr().as_ptr();
memcpy(code_ptr, trampoline, trampoline_size);
}
trampoline_region->set_writable(false);
trampoline_region->remap();
}
void Process::crash(int signal, u32 eip, bool out_of_memory)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!is_dead());
ASSERT(Process::current() == this);
if (out_of_memory) {
dbg() << "\033[31;1mOut of memory\033[m, killing: " << *this;
} else {
if (eip >= 0xc0000000 && g_kernel_symbols_available) {
auto* symbol = symbolicate_kernel_address(eip);
dbg() << "\033[31;1m" << String::format("%p", eip) << " " << (symbol ? demangle(symbol->name) : "(k?)") << " +" << (symbol ? eip - symbol->address : 0) << "\033[0m\n";
} else if (auto elf_bundle = this->elf_bundle()) {
dbg() << "\033[31;1m" << String::format("%p", eip) << " " << elf_bundle->elf_loader->symbolicate(eip) << "\033[0m\n";
} else {
dbg() << "\033[31;1m" << String::format("%p", eip) << " (?)\033[0m\n";
}
dump_backtrace();
}
m_termination_signal = signal;
dump_regions();
ASSERT(is_user_process());
die();
// We can not return from here, as there is nowhere
// to unwind to, so die right away.
Thread::current()->die_if_needed();
ASSERT_NOT_REACHED();
}
RefPtr<Process> Process::from_pid(ProcessID pid)
{
ScopedSpinLock lock(g_processes_lock);
for (auto& process : *g_processes) {
process.pid();
if (process.pid() == pid)
return &process;
}
return {};
}
RefPtr<FileDescription> Process::file_description(int fd) const
{
if (fd < 0)
return nullptr;
if (static_cast<size_t>(fd) < m_fds.size())
return m_fds[fd].description();
return nullptr;
}
int Process::fd_flags(int fd) const
{
if (fd < 0)
return -1;
if (static_cast<size_t>(fd) < m_fds.size())
return m_fds[fd].flags();
return -1;
}
int Process::number_of_open_file_descriptors() const
{
int count = 0;
for (auto& description : m_fds) {
if (description)
++count;
}
return count;
}
int Process::alloc_fd(int first_candidate_fd)
{
for (int i = first_candidate_fd; i < (int)m_max_open_file_descriptors; ++i) {
if (!m_fds[i])
return i;
}
return -EMFILE;
}
timeval kgettimeofday()
{
return TimeManagement::now_as_timeval();
}
void kgettimeofday(timeval& tv)
{
tv = kgettimeofday();
}
siginfo_t Process::wait_info()
{
siginfo_t siginfo;
memset(&siginfo, 0, sizeof(siginfo));
siginfo.si_signo = SIGCHLD;
siginfo.si_pid = pid().value();
siginfo.si_uid = uid();
if (m_termination_signal) {
siginfo.si_status = m_termination_signal;
siginfo.si_code = CLD_KILLED;
} else {
siginfo.si_status = m_termination_status;
siginfo.si_code = CLD_EXITED;
}
return siginfo;
}
Custody& Process::current_directory()
{
if (!m_cwd)
m_cwd = VFS::the().root_custody();
return *m_cwd;
}
KResultOr<String> Process::get_syscall_path_argument(const char* user_path, size_t path_length) const
{
if (path_length == 0)
return KResult(-EINVAL);
if (path_length > PATH_MAX)
return KResult(-ENAMETOOLONG);
auto copied_string = copy_string_from_user(user_path, path_length);
if (copied_string.is_null())
return KResult(-EFAULT);
return copied_string;
}
KResultOr<String> Process::get_syscall_path_argument(const Syscall::StringArgument& path) const
{
return get_syscall_path_argument(path.characters, path.length);
}
void Process::finalize(Thread& last_thread)
{
ASSERT(Thread::current() == g_finalizer);
#ifdef PROCESS_DEBUG
dbg() << "Finalizing process " << *this;
#endif
if (m_perf_event_buffer) {
auto description_or_error = VFS::the().open(String::format("perfcore.%d", m_pid), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { m_uid, m_gid });
if (!description_or_error.is_error()) {
auto& description = description_or_error.value();
auto json = m_perf_event_buffer->to_json(m_pid, m_executable ? m_executable->absolute_path() : "");
auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json.data());
auto result = description->write(json_buffer, json.size());
if (result.is_error()) {
dbgln("Error while writing perfcore file: {}", result.error().error());
}
}
}
m_fds.clear();
m_tty = nullptr;
m_executable = nullptr;
m_cwd = nullptr;
m_root_directory = nullptr;
m_root_directory_relative_to_global_root = nullptr;
m_dead = true;
disown_all_shared_buffers();
{
// FIXME: PID/TID BUG
if (auto parent_thread = Thread::from_tid(m_ppid.value())) {
if (!(parent_thread->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT))
parent_thread->send_signal(SIGCHLD, this);
}
}
{
ScopedSpinLock processses_lock(g_processes_lock);
if (!!ppid()) {
if (auto parent = Process::from_pid(ppid())) {
parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children;
parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children;
}
}
}
unblock_waiters(last_thread, Thread::WaitBlocker::UnblockFlags::Terminated);
{
ScopedSpinLock lock(m_lock);
m_regions.clear();
}
ASSERT(ref_count() > 0);
// WaitBlockCondition::finalize will be in charge of dropping the last
// reference if there are still waiters around, or whenever the last
// waitable states are consumed. Unless there is no parent around
// anymore, in which case we'll just drop it right away.
m_wait_block_condition.finalize();
}
void Process::unblock_waiters(Thread& thread, Thread::WaitBlocker::UnblockFlags flags, u8 signal)
{
if (auto parent = Process::from_pid(ppid()))
parent->m_wait_block_condition.unblock(thread, flags, signal);
}
void Process::die()
{
// Let go of the TTY, otherwise a slave PTY may keep the master PTY from
// getting an EOF when the last process using the slave PTY dies.
// If the master PTY owner relies on an EOF to know when to wait() on a
// slave owner, we have to allow the PTY pair to be torn down.
m_tty = nullptr;
kill_all_threads();
}
size_t Process::amount_dirty_private() const
{
// FIXME: This gets a bit more complicated for Regions sharing the same underlying VMObject.
// The main issue I'm thinking of is when the VMObject has physical pages that none of the Regions are mapping.
// That's probably a situation that needs to be looked at in general.
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
if (!region.is_shared())
amount += region.amount_dirty();
}
return amount;
}
size_t Process::amount_clean_inode() const
{
HashTable<const InodeVMObject*> vmobjects;
{
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
if (region.vmobject().is_inode())
vmobjects.set(&static_cast<const InodeVMObject&>(region.vmobject()));
}
}
size_t amount = 0;
for (auto& vmobject : vmobjects)
amount += vmobject->amount_clean();
return amount;
}
size_t Process::amount_virtual() const
{
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
amount += region.size();
}
return amount;
}
size_t Process::amount_resident() const
{
// FIXME: This will double count if multiple regions use the same physical page.
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
amount += region.amount_resident();
}
return amount;
}
size_t Process::amount_shared() const
{
// FIXME: This will double count if multiple regions use the same physical page.
// FIXME: It doesn't work at the moment, since it relies on PhysicalPage ref counts,
// and each PhysicalPage is only reffed by its VMObject. This needs to be refactored
// so that every Region contributes +1 ref to each of its PhysicalPages.
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
amount += region.amount_shared();
}
return amount;
}
size_t Process::amount_purgeable_volatile() const
{
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
if (region.vmobject().is_purgeable() && static_cast<const PurgeableVMObject&>(region.vmobject()).is_volatile())
amount += region.amount_resident();
}
return amount;
}
size_t Process::amount_purgeable_nonvolatile() const
{
size_t amount = 0;
ScopedSpinLock lock(m_lock);
for (auto& region : m_regions) {
if (region.vmobject().is_purgeable() && !static_cast<const PurgeableVMObject&>(region.vmobject()).is_volatile())
amount += region.amount_resident();
}
return amount;
}
void Process::terminate_due_to_signal(u8 signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
dbg() << "Terminating " << *this << " due to signal " << signal;
m_termination_status = 0;
m_termination_signal = signal;
die();
}
KResult Process::send_signal(u8 signal, Process* sender)
{
// Try to send it to the "obvious" main thread:
auto receiver_thread = Thread::from_tid(m_pid.value());
// If the main thread has died, there may still be other threads:
if (!receiver_thread) {
// The first one should be good enough.
// Neither kill(2) nor kill(3) specify any selection precedure.
for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision {
receiver_thread = &thread;
return IterationDecision::Break;
});
}
if (receiver_thread) {
receiver_thread->send_signal(signal, sender);
return KSuccess;
}
return KResult(-ESRCH);
}
RefPtr<Thread> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity, bool joinable)
{
ASSERT((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX));
// FIXME: Do something with guard pages?
auto thread = adopt(*new Thread(*this));
thread->set_name(name);
thread->set_affinity(affinity);
thread->set_priority(priority);
if (!joinable)
thread->detach();
auto& tss = thread->tss();
tss.eip = (FlatPtr)entry;
tss.esp = FlatPtr(entry_data); // entry function argument is expected to be in tss.esp
ScopedSpinLock lock(g_scheduler_lock);
thread->set_state(Thread::State::Runnable);
return thread;
}
void Process::FileDescriptionAndFlags::clear()
{
m_description = nullptr;
m_flags = 0;
}
void Process::FileDescriptionAndFlags::set(NonnullRefPtr<FileDescription>&& description, u32 flags)
{
m_description = move(description);
m_flags = flags;
}
KBuffer Process::backtrace() const
{
KBufferBuilder builder;
for_each_thread([&](Thread& thread) {
builder.appendf("Thread %d (%s):\n", thread.tid().value(), thread.name().characters());
builder.append(thread.backtrace());
return IterationDecision::Continue;
});
return builder.build();
}
Custody& Process::root_directory()
{
if (!m_root_directory)
m_root_directory = VFS::the().root_custody();
return *m_root_directory;
}
Custody& Process::root_directory_relative_to_global_root()
{
if (!m_root_directory_relative_to_global_root)
m_root_directory_relative_to_global_root = root_directory();
return *m_root_directory_relative_to_global_root;
}
void Process::set_root_directory(const Custody& root)
{
m_root_directory = root;
}
Region& Process::add_region(NonnullOwnPtr<Region> region)
{
auto* ptr = region.ptr();
ScopedSpinLock lock(m_lock);
m_regions.append(move(region));
return *ptr;
}
void Process::set_tty(TTY* tty)
{
m_tty = tty;
}
OwnPtr<Process::ELFBundle> Process::elf_bundle() const
{
if (!m_executable)
return nullptr;
auto bundle = make<ELFBundle>();
if (!m_executable->inode().shared_vmobject()) {
return nullptr;
}
ASSERT(m_executable->inode().shared_vmobject());
auto& vmobject = *m_executable->inode().shared_vmobject();
bundle->region = MM.allocate_kernel_region_with_vmobject(const_cast<SharedInodeVMObject&>(vmobject), vmobject.size(), "ELF bundle", Region::Access::Read);
if (!bundle->region)
return nullptr;
bundle->elf_loader = ELF::Loader::create(bundle->region->vaddr().as_ptr(), bundle->region->size());
return bundle;
}
}