serenity/AK/IPv6Address.h
kleines Filmröllchen d21ee3206e AK: Add IPv6 subnet and address category handling
IPv6Address can now determine the broad address
categories as defined in various RFCs, and check
if addresses belong to certain subnets.
2024-09-08 18:27:55 -04:00

347 lines
11 KiB
C++

/*
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Endian.h>
#include <AK/Format.h>
#include <AK/Optional.h>
#include <AK/StringView.h>
#include <AK/UFixedBigInt.h>
#include <AK/Vector.h>
#ifdef KERNEL
# include <AK/Error.h>
# include <Kernel/Library/KString.h>
#else
# include <AK/String.h>
#endif
#include <AK/IPv4Address.h>
#include <AK/StringBuilder.h>
namespace AK {
class [[gnu::packed]] IPv6Address {
public:
using in6_addr_t = u8[16];
constexpr IPv6Address() = default;
constexpr IPv6Address(in6_addr_t const& data)
{
for (size_t i = 0; i < 16; i++)
m_data[i] = data[i];
}
constexpr IPv6Address(IPv4Address const& ipv4_address)
{
// IPv4 mapped IPv6 address
m_data[10] = 0xff;
m_data[11] = 0xff;
m_data[12] = ipv4_address[0];
m_data[13] = ipv4_address[1];
m_data[14] = ipv4_address[2];
m_data[15] = ipv4_address[3];
}
constexpr u16 operator[](int i) const { return group(i); }
#ifdef KERNEL
ErrorOr<NonnullOwnPtr<Kernel::KString>> to_string() const
#else
ErrorOr<String> to_string() const
#endif
{
if (is_zero()) {
#ifdef KERNEL
return Kernel::KString::try_create("::"sv);
#else
return "::"_string;
#endif
}
StringBuilder builder;
if (is_ipv4_mapped()) {
#ifdef KERNEL
return Kernel::KString::formatted("::ffff:{}.{}.{}.{}", m_data[12], m_data[13], m_data[14], m_data[15]);
#else
return String::formatted("::ffff:{}.{}.{}.{}", m_data[12], m_data[13], m_data[14], m_data[15]);
#endif
}
// Find the start of the longest span of 0 values
Optional<int> longest_zero_span_start;
int zero_span_length = 0;
for (int i = 0; i < 8;) {
if (group(i) != 0) {
i++;
continue;
}
int contiguous_zeros = 1;
for (int j = i + 1; j < 8; j++) {
if (group(j) != 0)
break;
contiguous_zeros++;
}
if (!longest_zero_span_start.has_value() || longest_zero_span_start.value() < contiguous_zeros) {
longest_zero_span_start = i;
zero_span_length = contiguous_zeros;
}
i += contiguous_zeros;
}
for (int i = 0; i < 8;) {
if (longest_zero_span_start.has_value() && longest_zero_span_start.value() == i) {
if (longest_zero_span_start.value() + zero_span_length >= 8)
TRY(builder.try_append("::"sv));
else
TRY(builder.try_append(':'));
i += zero_span_length;
continue;
}
if (i == 0)
TRY(builder.try_appendff("{:x}", group(i)));
else
TRY(builder.try_appendff(":{:x}", group(i)));
i++;
}
#ifdef KERNEL
return Kernel::KString::try_create(builder.string_view());
#else
return builder.to_string();
#endif
}
static Optional<IPv6Address> from_string(StringView string)
{
if (string.is_null())
return {};
auto const parts = string.split_view(':', SplitBehavior::KeepEmpty);
if (parts.is_empty())
return {};
if (parts.size() > 9) {
// We may have 9 parts if the address is compressed
// at the beginning or end, e.g. by substituting the
// leading or trailing 0 with a : character. Otherwise,
// the maximum number of parts is 8, which we validate
// when expanding the compression.
return {};
}
if (parts.size() >= 4 && parts[parts.size() - 1].contains('.')) {
// Check if this may be an ipv4 mapped address
auto is_ipv4_prefix = [&]() {
auto separator_part = parts[parts.size() - 2].trim_whitespace();
if (separator_part.is_empty())
return false;
auto separator_value = StringUtils::convert_to_uint_from_hex(separator_part);
if (!separator_value.has_value() || separator_value.value() != 0xffff)
return false;
// TODO: this allows multiple compression tags "::" in the prefix, which is technically not legal
for (size_t i = 0; i < parts.size() - 2; i++) {
auto part = parts[i].trim_whitespace();
if (part.is_empty())
continue;
auto value = StringUtils::convert_to_uint_from_hex(part);
if (!value.has_value() || value.value() != 0)
return false;
}
return true;
};
if (is_ipv4_prefix()) {
auto ipv4_address = IPv4Address::from_string(parts[parts.size() - 1]);
if (ipv4_address.has_value())
return IPv6Address(ipv4_address.value());
return {};
}
}
in6_addr_t addr {};
int group = 0;
int have_groups = 0;
bool found_compressed = false;
for (size_t i = 0; i < parts.size();) {
auto trimmed_part = parts[i].trim_whitespace();
if (trimmed_part.is_empty()) {
if (found_compressed)
return {};
int empty_parts = 1;
bool is_leading = (i == 0);
bool is_trailing = false;
for (size_t j = i + 1; j < parts.size(); j++) {
if (!parts[j].trim_whitespace().is_empty())
break;
empty_parts++;
if (j == parts.size() - 1)
is_trailing = true;
}
if (is_leading && is_trailing) {
if (empty_parts > 3)
return {};
return IPv6Address();
}
if (is_leading || is_trailing) {
if (empty_parts > 2)
return {};
} else if (empty_parts > 1) {
return {};
}
int remaining_parts = parts.size() - empty_parts - have_groups;
found_compressed = true;
group = 8 - remaining_parts;
VERIFY(group >= 0);
i += empty_parts;
continue;
} else {
i++;
}
auto part = StringUtils::convert_to_uint_from_hex(trimmed_part);
if (!part.has_value() || part.value() > 0xffff)
return {};
if (++have_groups > 8)
return {};
VERIFY(group < 8);
addr[group * sizeof(u16)] = (u8)(part.value() >> 8);
addr[group * sizeof(u16) + 1] = (u8)part.value();
group++;
}
return IPv6Address(addr);
}
constexpr in6_addr_t const& to_in6_addr_t() const { return m_data; }
constexpr bool operator==(IPv6Address const& other) const = default;
constexpr bool operator!=(IPv6Address const& other) const = default;
constexpr bool is_zero() const
{
for (auto& d : m_data) {
if (d != 0)
return false;
}
return true;
}
constexpr bool is_ipv4_mapped() const
{
if (m_data[0] || m_data[1] || m_data[2] || m_data[3] || m_data[4] || m_data[5] || m_data[6] || m_data[7] || m_data[8] || m_data[9])
return false;
if (m_data[10] != 0xff || m_data[11] != 0xff)
return false;
return true;
}
Optional<IPv4Address> ipv4_mapped_address() const
{
if (is_ipv4_mapped())
return IPv4Address(m_data[12], m_data[13], m_data[14], m_data[15]);
return {};
}
// https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.3
[[nodiscard]] static IPv6Address loopback()
{
return IPv6Address({ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 });
}
[[nodiscard]] constexpr bool is_loopback() const
{
return *this == loopback();
}
[[nodiscard]] constexpr bool is_in_subnet(IPv6Address subnet, u16 network_size) const
{
VERIFY(network_size <= 128);
return this->network(network_size) == subnet;
}
[[nodiscard]] constexpr IPv6Address network(u16 network_size) const
{
VERIFY(network_size <= 128);
IPv6Address net;
for (int i = 0; i < 16; ++i) {
if (network_size >= 8) {
net.m_data[i] = m_data[i];
network_size -= 8;
} else {
u8 mask = ((1 << network_size) - 1) << (8 - network_size);
net.m_data[i] = m_data[i] & mask;
break;
}
}
return net;
}
// https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.6
[[nodiscard]] constexpr bool is_link_local() const
{
return is_in_subnet({ { 0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, 10);
}
// https://datatracker.ietf.org/doc/html/rfc4193
[[nodiscard]] constexpr bool is_unique_local() const
{
return is_in_subnet({ { 0xfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, 7);
}
// https://datatracker.ietf.org/doc/html/rfc2373#section-2.7
[[nodiscard]] constexpr bool is_multicast() const
{
return is_in_subnet({ { 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } }, 8);
}
[[nodiscard]] constexpr bool is_unicast() const { return !is_multicast(); }
private:
constexpr u16 group(unsigned i) const
{
VERIFY(i < 8);
return ((u16)m_data[i * sizeof(u16)] << 8) | m_data[i * sizeof(u16) + 1];
}
in6_addr_t m_data {};
};
static_assert(sizeof(IPv6Address) == 16);
template<>
struct Traits<IPv6Address> : public DefaultTraits<IPv6Address> {
// SipHash-4-8 is considered conservatively secure, even if not cryptographically secure.
static unsigned hash(IPv6Address const& address) { return sip_hash_bytes<4, 8>({ &address.to_in6_addr_t(), sizeof(address.to_in6_addr_t()) }); }
};
#ifdef KERNEL
template<>
struct Formatter<IPv6Address> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, IPv6Address const& value)
{
return Formatter<StringView>::format(builder, TRY(value.to_string())->view());
}
};
#else
template<>
struct Formatter<IPv6Address> : Formatter<StringView> {
ErrorOr<void> format(FormatBuilder& builder, IPv6Address const& value)
{
return Formatter<StringView>::format(builder, TRY(value.to_string()));
}
};
#endif
}
#if USING_AK_GLOBALLY
using AK::IPv6Address;
#endif