serenity/Userland/Services/AudioServer/Mixer.cpp
kleines Filmröllchen 49b087f3cd LibAudio+Userland: Use new audio queue in client-server communication
Previously, we were sending Buffers to the server whenever we had new
audio data for it. This meant that for every audio enqueue action, we
needed to create a new shared memory anonymous buffer, send that
buffer's file descriptor over IPC (+recfd on the other side) and then
map the buffer into the audio server's memory to be able to play it.
This was fine for sending large chunks of audio data, like when playing
existing audio files. However, in the future we want to move to
real-time audio in some applications like Piano. This means that the
size of buffers that are sent need to be very small, as just the size of
a buffer itself is part of the audio latency. If we were to try
real-time audio with the existing system, we would run into problems
really quickly. Dealing with a continuous stream of new anonymous files
like the current audio system is rather expensive, as we need Kernel
help in multiple places. Additionally, every enqueue incurs an IPC call,
which are not optimized for >1000 calls/second (which would be needed
for real-time audio with buffer sizes of ~40 samples). So a fundamental
change in how we handle audio sending in userspace is necessary.

This commit moves the audio sending system onto a shared single producer
circular queue (SSPCQ) (introduced with one of the previous commits).
This queue is intended to live in shared memory and be accessed by
multiple processes at the same time. It was specifically written to
support the audio sending case, so e.g. it only supports a single
producer (the audio client). Now, audio sending follows these general
steps:
- The audio client connects to the audio server.
- The audio client creates a SSPCQ in shared memory.
- The audio client sends the SSPCQ's file descriptor to the audio server
  with the set_buffer() IPC call.
- The audio server receives the SSPCQ and maps it.
- The audio client signals start of playback with start_playback().
- At the same time:
  - The audio client writes its audio data into the shared-memory queue.
  - The audio server reads audio data from the shared-memory queue(s).
  Both sides have additional before-queue/after-queue buffers, depending
  on the exact application.
- Pausing playback is just an IPC call, nothing happens to the buffer
  except that the server stops reading from it until playback is
  resumed.
- Muting has nothing to do with whether audio data is read or not.
- When the connection closes, the queues are unmapped on both sides.

This should already improve audio playback performance in a bunch of
places.

Implementation & commit notes:
- Audio loaders don't create LegacyBuffers anymore. LegacyBuffer is kept
  for WavLoader, see previous commit message.
- Most intra-process audio data passing is done with FixedArray<Sample>
  or Vector<Sample>.
- Improvements to most audio-enqueuing applications. (If necessary I can
  try to extract some of the aplay improvements.)
- New APIs on LibAudio/ClientConnection which allows non-realtime
  applications to enqueue audio in big chunks like before.
- Removal of status APIs from the audio server connection for
  information that can be directly obtained from the shared queue.
- Split the pause playback API into two APIs with more intuitive names.

I know this is a large commit, and you can kinda tell from the commit
message. It's basically impossible to break this up without hacks, so
please forgive me. These are some of the best changes to the audio
subsystem and I hope that that makes up for this :yaktangle: commit.

:yakring:
2022-04-21 13:55:00 +02:00

203 lines
6.1 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, kleines Filmröllchen <filmroellchen@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Mixer.h"
#include <AK/Array.h>
#include <AK/Format.h>
#include <AK/MemoryStream.h>
#include <AK/NumericLimits.h>
#include <AudioServer/ConnectionFromClient.h>
#include <AudioServer/Mixer.h>
#include <LibCore/ConfigFile.h>
#include <LibCore/Timer.h>
#include <pthread.h>
#include <stdlib.h>
#include <sys/ioctl.h>
namespace AudioServer {
u8 Mixer::m_zero_filled_buffer[4096];
Mixer::Mixer(NonnullRefPtr<Core::ConfigFile> config)
// FIXME: Allow AudioServer to use other audio channels as well
: m_device(Core::File::construct("/dev/audio/0", this))
, m_sound_thread(Threading::Thread::construct(
[this] {
mix();
return 0;
},
"AudioServer[mixer]"))
, m_config(move(config))
{
if (!m_device->open(Core::OpenMode::WriteOnly)) {
dbgln("Can't open audio device: {}", m_device->error_string());
return;
}
m_muted = m_config->read_bool_entry("Master", "Mute", false);
m_main_volume = static_cast<double>(m_config->read_num_entry("Master", "Volume", 100)) / 100.0;
m_sound_thread->start();
}
NonnullRefPtr<ClientAudioStream> Mixer::create_queue(ConnectionFromClient& client)
{
auto queue = adopt_ref(*new ClientAudioStream(client));
m_pending_mutex.lock();
m_pending_mixing.append(*queue);
m_pending_mutex.unlock();
// Signal the mixer thread to start back up, in case nobody was connected before.
m_mixing_necessary.signal();
return queue;
}
void Mixer::mix()
{
decltype(m_pending_mixing) active_mix_queues;
for (;;) {
m_pending_mutex.lock();
// While we have nothing to mix, wait on the condition.
m_mixing_necessary.wait_while([this, &active_mix_queues]() { return m_pending_mixing.is_empty() && active_mix_queues.is_empty(); });
if (!m_pending_mixing.is_empty()) {
active_mix_queues.extend(move(m_pending_mixing));
m_pending_mixing.clear();
}
m_pending_mutex.unlock();
active_mix_queues.remove_all_matching([&](auto& entry) { return !entry->client(); });
Audio::Sample mixed_buffer[1024];
auto mixed_buffer_length = (int)(sizeof(mixed_buffer) / sizeof(Audio::Sample));
m_main_volume.advance_time();
int active_queues = 0;
// Mix the buffers together into the output
for (auto& queue : active_mix_queues) {
if (!queue->client()) {
queue->clear();
continue;
}
++active_queues;
queue->volume().advance_time();
for (int i = 0; i < mixed_buffer_length; ++i) {
auto& mixed_sample = mixed_buffer[i];
Audio::Sample sample;
if (!queue->get_next_sample(sample))
break;
if (queue->is_muted())
continue;
sample.log_multiply(SAMPLE_HEADROOM);
sample.log_multiply(queue->volume());
mixed_sample += sample;
}
}
if (m_muted) {
m_device->write(m_zero_filled_buffer, sizeof(m_zero_filled_buffer));
} else {
Array<u8, 4096> buffer;
OutputMemoryStream stream { buffer };
for (int i = 0; i < mixed_buffer_length; ++i) {
auto& mixed_sample = mixed_buffer[i];
// Even though it's not realistic, the user expects no sound at 0%.
if (m_main_volume < 0.01)
mixed_sample = Audio::Sample { 0 };
else
mixed_sample.log_multiply(m_main_volume);
mixed_sample.clip();
LittleEndian<i16> out_sample;
out_sample = mixed_sample.left * NumericLimits<i16>::max();
stream << out_sample;
out_sample = mixed_sample.right * NumericLimits<i16>::max();
stream << out_sample;
}
VERIFY(stream.is_end());
VERIFY(!stream.has_any_error());
m_device->write(stream.data(), stream.size());
}
}
}
void Mixer::set_main_volume(double volume)
{
if (volume < 0)
m_main_volume = 0;
else if (volume > 2)
m_main_volume = 2;
else
m_main_volume = volume;
m_config->write_num_entry("Master", "Volume", static_cast<int>(volume * 100));
request_setting_sync();
ConnectionFromClient::for_each([&](ConnectionFromClient& client) {
client.did_change_main_mix_volume({}, main_volume());
});
}
void Mixer::set_muted(bool muted)
{
if (m_muted == muted)
return;
m_muted = muted;
m_config->write_bool_entry("Master", "Mute", m_muted);
request_setting_sync();
ConnectionFromClient::for_each([muted](ConnectionFromClient& client) {
client.did_change_main_mix_muted_state({}, muted);
});
}
int Mixer::audiodevice_set_sample_rate(u32 sample_rate)
{
int code = ioctl(m_device->fd(), SOUNDCARD_IOCTL_SET_SAMPLE_RATE, sample_rate);
if (code != 0)
dbgln("Error while setting sample rate to {}: ioctl error: {}", sample_rate, strerror(errno));
return code;
}
u32 Mixer::audiodevice_get_sample_rate() const
{
u32 sample_rate = 0;
int code = ioctl(m_device->fd(), SOUNDCARD_IOCTL_GET_SAMPLE_RATE, &sample_rate);
if (code != 0)
dbgln("Error while getting sample rate: ioctl error: {}", strerror(errno));
return sample_rate;
}
void Mixer::request_setting_sync()
{
if (m_config_write_timer.is_null() || !m_config_write_timer->is_active()) {
m_config_write_timer = Core::Timer::create_single_shot(
AUDIO_CONFIG_WRITE_INTERVAL,
[this] {
if (auto result = m_config->sync(); result.is_error())
dbgln("Failed to write audio mixer config: {}", result.error());
},
this);
m_config_write_timer->start();
}
}
ClientAudioStream::ClientAudioStream(ConnectionFromClient& client)
: m_client(client)
{
}
}