mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-23 18:02:05 -05:00
6622ad8895
Patch from Anonymous.
666 lines
14 KiB
C++
666 lines
14 KiB
C++
/*
|
|
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <LibC/assert.h>
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
|
|
template<size_t>
|
|
constexpr double e_to_power();
|
|
template<>
|
|
constexpr double e_to_power<0>() { return 1; }
|
|
template<size_t exponent>
|
|
constexpr double e_to_power() { return M_E * e_to_power<exponent - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t factorial();
|
|
template<>
|
|
constexpr size_t factorial<0>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t factorial() { return value * factorial<value - 1>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_even();
|
|
template<>
|
|
constexpr size_t product_even<2>() { return 2; }
|
|
template<size_t value>
|
|
constexpr size_t product_even() { return value * product_even<value - 2>(); }
|
|
|
|
template<size_t>
|
|
constexpr size_t product_odd();
|
|
template<>
|
|
constexpr size_t product_odd<1>() { return 1; }
|
|
template<size_t value>
|
|
constexpr size_t product_odd() { return value * product_odd<value - 2>(); }
|
|
|
|
enum class RoundingMode {
|
|
ToZero,
|
|
Up,
|
|
Down,
|
|
ToEven
|
|
};
|
|
|
|
template<typename T>
|
|
union FloatExtractor;
|
|
|
|
template<>
|
|
union FloatExtractor<double> {
|
|
static const int mantissa_bits = 52;
|
|
static const int exponent_bias = 1023;
|
|
struct {
|
|
unsigned long long mantissa : 52;
|
|
unsigned exponent : 11;
|
|
int sign : 1;
|
|
};
|
|
double d;
|
|
};
|
|
|
|
template<>
|
|
union FloatExtractor<float> {
|
|
static const int mantissa_bits = 23;
|
|
static const int exponent_bias = 127;
|
|
struct {
|
|
unsigned long long mantissa : 23;
|
|
unsigned exponent : 8;
|
|
int sign : 1;
|
|
};
|
|
float d;
|
|
};
|
|
|
|
// This is much branchier than it really needs to be
|
|
template<typename FloatType>
|
|
static FloatType internal_to_integer(FloatType x, RoundingMode rounding_mode)
|
|
{
|
|
if (!isfinite(x))
|
|
return x;
|
|
using Extractor = FloatExtractor<decltype(x)>;
|
|
Extractor extractor;
|
|
extractor.d = x;
|
|
auto unbiased_exponent = extractor.exponent - Extractor::exponent_bias;
|
|
bool round = false;
|
|
bool guard = false;
|
|
if (unbiased_exponent < 0) {
|
|
// it was easier to special case [0..1) as it saves us from
|
|
// handling subnormals, underflows, etc
|
|
if (unbiased_exponent == -1) {
|
|
round = true;
|
|
}
|
|
guard = extractor.mantissa != 0;
|
|
extractor.mantissa = 0;
|
|
extractor.exponent = 0;
|
|
} else {
|
|
if (unbiased_exponent >= Extractor::mantissa_bits)
|
|
return x;
|
|
auto dead_bitcount = Extractor::mantissa_bits - unbiased_exponent;
|
|
auto dead_mask = (1ull << dead_bitcount) - 1;
|
|
auto dead_bits = extractor.mantissa & dead_mask;
|
|
extractor.mantissa &= ~dead_mask;
|
|
|
|
auto guard_mask = dead_mask >> 1;
|
|
guard = (dead_bits & guard_mask) != 0;
|
|
round = (dead_bits & ~guard_mask) != 0;
|
|
}
|
|
bool should_round = false;
|
|
switch (rounding_mode) {
|
|
case RoundingMode::ToEven:
|
|
should_round = round;
|
|
break;
|
|
case RoundingMode::Up:
|
|
if (!extractor.sign)
|
|
should_round = guard || round;
|
|
break;
|
|
case RoundingMode::Down:
|
|
if (extractor.sign)
|
|
should_round = guard || round;
|
|
break;
|
|
case RoundingMode::ToZero:
|
|
break;
|
|
}
|
|
if (should_round) {
|
|
// We could do this ourselves, but this saves us from manually
|
|
// handling overflow.
|
|
if (extractor.sign)
|
|
extractor.d -= 1.0;
|
|
else
|
|
extractor.d += 1.0;
|
|
}
|
|
|
|
return extractor.d;
|
|
}
|
|
|
|
extern "C" {
|
|
|
|
double trunc(double x) NOEXCEPT
|
|
{
|
|
return internal_to_integer(x, RoundingMode::ToZero);
|
|
}
|
|
|
|
double cos(double angle) NOEXCEPT
|
|
{
|
|
return sin(angle + M_PI_2);
|
|
}
|
|
|
|
float cosf(float angle) NOEXCEPT
|
|
{
|
|
return sinf(angle + M_PI_2);
|
|
}
|
|
|
|
// This can also be done with a taylor expansion, but for
|
|
// now this works pretty well (and doesn't mess anything up
|
|
// in quake in particular, which is very Floating-Point precision
|
|
// heavy)
|
|
double sin(double angle) NOEXCEPT
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fsin"
|
|
: "=t"(ret)
|
|
: "0"(angle));
|
|
|
|
return ret;
|
|
}
|
|
|
|
float sinf(float angle) NOEXCEPT
|
|
{
|
|
float ret = 0.0f;
|
|
__asm__(
|
|
"fsin"
|
|
: "=t"(ret)
|
|
: "0"(angle));
|
|
return ret;
|
|
}
|
|
|
|
double pow(double x, double y) NOEXCEPT
|
|
{
|
|
// FIXME: Please fix me. I am naive.
|
|
if (isnan(y))
|
|
return y;
|
|
if (y == 0)
|
|
return 1;
|
|
if (x == 0)
|
|
return 0;
|
|
if (y == 1)
|
|
return x;
|
|
int y_as_int = (int)y;
|
|
if (y == (double)y_as_int) {
|
|
double result = x;
|
|
for (int i = 0; i < fabs(y) - 1; ++i)
|
|
result *= x;
|
|
if (y < 0)
|
|
result = 1.0 / result;
|
|
return result;
|
|
}
|
|
return exp2(y * log2(x));
|
|
}
|
|
|
|
float powf(float x, float y) NOEXCEPT
|
|
{
|
|
return (float)pow(x, y);
|
|
}
|
|
|
|
double ldexp(double x, int exp) NOEXCEPT
|
|
{
|
|
return x * exp2(exp);
|
|
}
|
|
|
|
float ldexpf(float x, int exp) NOEXCEPT
|
|
{
|
|
return x * exp2f(exp);
|
|
}
|
|
|
|
double tanh(double x) NOEXCEPT
|
|
{
|
|
if (x > 0) {
|
|
double exponentiated = exp(2 * x);
|
|
return (exponentiated - 1) / (exponentiated + 1);
|
|
}
|
|
double plusX = exp(x);
|
|
double minusX = 1 / plusX;
|
|
return (plusX - minusX) / (plusX + minusX);
|
|
}
|
|
|
|
static double ampsin(double angle) NOEXCEPT
|
|
{
|
|
double looped_angle = fmod(M_PI + angle, M_TAU) - M_PI;
|
|
double looped_angle_squared = looped_angle * looped_angle;
|
|
|
|
double quadratic_term;
|
|
if (looped_angle > 0) {
|
|
quadratic_term = -looped_angle_squared;
|
|
} else {
|
|
quadratic_term = looped_angle_squared;
|
|
}
|
|
|
|
double linear_term = M_PI * looped_angle;
|
|
|
|
return quadratic_term + linear_term;
|
|
}
|
|
|
|
double tan(double angle) NOEXCEPT
|
|
{
|
|
return ampsin(angle) / ampsin(M_PI_2 + angle);
|
|
}
|
|
|
|
double sqrt(double x) NOEXCEPT
|
|
{
|
|
double res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
float sqrtf(float x) NOEXCEPT
|
|
{
|
|
float res;
|
|
__asm__("fsqrt"
|
|
: "=t"(res)
|
|
: "0"(x));
|
|
return res;
|
|
}
|
|
|
|
double sinh(double x) NOEXCEPT
|
|
{
|
|
double exponentiated = exp(x);
|
|
if (x > 0)
|
|
return (exponentiated * exponentiated - 1) / 2 / exponentiated;
|
|
return (exponentiated - 1 / exponentiated) / 2;
|
|
}
|
|
|
|
double log10(double x) NOEXCEPT
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fldlg2\n"
|
|
"fld %%st(1)\n"
|
|
"fyl2x\n"
|
|
"fstp %%st(1)"
|
|
: "=t"(ret)
|
|
: "0"(x));
|
|
return ret;
|
|
}
|
|
|
|
double log(double x) NOEXCEPT
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fldln2\n"
|
|
"fld %%st(1)\n"
|
|
"fyl2x\n"
|
|
"fstp %%st(1)"
|
|
: "=t"(ret)
|
|
: "0"(x));
|
|
return ret;
|
|
}
|
|
|
|
float logf(float x) NOEXCEPT
|
|
{
|
|
return (float)log(x);
|
|
}
|
|
|
|
double fmod(double index, double period) NOEXCEPT
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
float fmodf(float index, float period) NOEXCEPT
|
|
{
|
|
return index - trunc(index / period) * period;
|
|
}
|
|
|
|
double exp(double exponent) NOEXCEPT
|
|
{
|
|
double res = 0;
|
|
__asm__("fldl2e\n"
|
|
"fmulp\n"
|
|
"fld1\n"
|
|
"fld %%st(1)\n"
|
|
"fprem\n"
|
|
"f2xm1\n"
|
|
"faddp\n"
|
|
"fscale\n"
|
|
"fstp %%st(1)"
|
|
: "=t"(res)
|
|
: "0"(exponent));
|
|
return res;
|
|
}
|
|
|
|
float expf(float exponent) NOEXCEPT
|
|
{
|
|
return (float)exp(exponent);
|
|
}
|
|
|
|
double exp2(double exponent) NOEXCEPT
|
|
{
|
|
double res = 0;
|
|
__asm__("fld1\n"
|
|
"fld %%st(1)\n"
|
|
"fprem\n"
|
|
"f2xm1\n"
|
|
"faddp\n"
|
|
"fscale\n"
|
|
"fstp %%st(1)"
|
|
: "=t"(res)
|
|
: "0"(exponent));
|
|
return res;
|
|
}
|
|
|
|
float exp2f(float exponent) NOEXCEPT
|
|
{
|
|
return (float)exp2(exponent);
|
|
}
|
|
|
|
double cosh(double x) NOEXCEPT
|
|
{
|
|
double exponentiated = exp(-x);
|
|
if (x < 0)
|
|
return (1 + exponentiated * exponentiated) / 2 / exponentiated;
|
|
return (1 / exponentiated + exponentiated) / 2;
|
|
}
|
|
|
|
double atan2(double y, double x) NOEXCEPT
|
|
{
|
|
if (x > 0)
|
|
return atan(y / x);
|
|
if (x == 0) {
|
|
if (y > 0)
|
|
return M_PI_2;
|
|
if (y < 0)
|
|
return -M_PI_2;
|
|
return 0;
|
|
}
|
|
if (y >= 0)
|
|
return atan(y / x) + M_PI;
|
|
return atan(y / x) - M_PI;
|
|
}
|
|
|
|
float atan2f(float y, float x) NOEXCEPT
|
|
{
|
|
return (float)atan2(y, x);
|
|
}
|
|
|
|
double atan(double x) NOEXCEPT
|
|
{
|
|
if (x < 0)
|
|
return -atan(-x);
|
|
if (x > 1)
|
|
return M_PI_2 - atan(1 / x);
|
|
double squared = x * x;
|
|
return x / (1 + 1 * 1 * squared / (3 + 2 * 2 * squared / (5 + 3 * 3 * squared / (7 + 4 * 4 * squared / (9 + 5 * 5 * squared / (11 + 6 * 6 * squared / (13 + 7 * 7 * squared)))))));
|
|
}
|
|
|
|
double asin(double x) NOEXCEPT
|
|
{
|
|
if (x > 1 || x < -1)
|
|
return NAN;
|
|
if (x > 0.5 || x < -0.5)
|
|
return 2 * atan(x / (1 + sqrt(1 - x * x)));
|
|
double squared = x * x;
|
|
double value = x;
|
|
double i = x * squared;
|
|
value += i * product_odd<1>() / product_even<2>() / 3;
|
|
i *= squared;
|
|
value += i * product_odd<3>() / product_even<4>() / 5;
|
|
i *= squared;
|
|
value += i * product_odd<5>() / product_even<6>() / 7;
|
|
i *= squared;
|
|
value += i * product_odd<7>() / product_even<8>() / 9;
|
|
i *= squared;
|
|
value += i * product_odd<9>() / product_even<10>() / 11;
|
|
i *= squared;
|
|
value += i * product_odd<11>() / product_even<12>() / 13;
|
|
return value;
|
|
}
|
|
|
|
float asinf(float x) NOEXCEPT
|
|
{
|
|
return (float)asin(x);
|
|
}
|
|
|
|
double acos(double x) NOEXCEPT
|
|
{
|
|
return M_PI_2 - asin(x);
|
|
}
|
|
|
|
float acosf(float x) NOEXCEPT
|
|
{
|
|
return M_PI_2 - asinf(x);
|
|
}
|
|
|
|
double fabs(double value) NOEXCEPT
|
|
{
|
|
return value < 0 ? -value : value;
|
|
}
|
|
|
|
double log2(double x) NOEXCEPT
|
|
{
|
|
double ret = 0.0;
|
|
__asm__(
|
|
"fld1\n"
|
|
"fld %%st(1)\n"
|
|
"fyl2x\n"
|
|
"fstp %%st(1)"
|
|
: "=t"(ret)
|
|
: "0"(x));
|
|
return ret;
|
|
}
|
|
|
|
float log2f(float x) NOEXCEPT
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
long double log2l(long double x) NOEXCEPT
|
|
{
|
|
return log2(x);
|
|
}
|
|
|
|
double frexp(double, int*) NOEXCEPT
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
float frexpf(float, int*) NOEXCEPT
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
long double frexpl(long double, int*) NOEXCEPT
|
|
{
|
|
ASSERT_NOT_REACHED();
|
|
return 0;
|
|
}
|
|
|
|
double round(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
float roundf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
float floorf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Down);
|
|
}
|
|
|
|
double floor(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Down);
|
|
}
|
|
|
|
double rint(double value) NOEXCEPT
|
|
{
|
|
// This should be the current rounding mode
|
|
return internal_to_integer(value, RoundingMode::ToEven);
|
|
}
|
|
|
|
float ceilf(float value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Up);
|
|
}
|
|
|
|
double ceil(double value) NOEXCEPT
|
|
{
|
|
return internal_to_integer(value, RoundingMode::Up);
|
|
}
|
|
|
|
double modf(double x, double* intpart) NOEXCEPT
|
|
{
|
|
double integer_part = internal_to_integer(x, RoundingMode::ToZero);
|
|
*intpart = integer_part;
|
|
auto fraction = x - integer_part;
|
|
if (signbit(fraction) != signbit(x))
|
|
fraction = -fraction;
|
|
return fraction;
|
|
}
|
|
|
|
double gamma(double x) NOEXCEPT
|
|
{
|
|
// Stirling approximation
|
|
return sqrt(2.0 * M_PI / x) * pow(x / M_E, x);
|
|
}
|
|
|
|
double expm1(double x) NOEXCEPT
|
|
{
|
|
return exp(x) - 1;
|
|
}
|
|
|
|
double cbrt(double x) NOEXCEPT
|
|
{
|
|
if (isinf(x) || x == 0)
|
|
return x;
|
|
if (x < 0)
|
|
return -cbrt(-x);
|
|
|
|
double r = x;
|
|
double ex = 0;
|
|
|
|
while (r < 0.125) {
|
|
r *= 8;
|
|
ex--;
|
|
}
|
|
while (r > 1.0) {
|
|
r *= 0.125;
|
|
ex++;
|
|
}
|
|
|
|
r = (-0.46946116 * r + 1.072302) * r + 0.3812513;
|
|
|
|
while (ex < 0) {
|
|
r *= 0.5;
|
|
ex++;
|
|
}
|
|
while (ex > 0) {
|
|
r *= 2;
|
|
ex--;
|
|
}
|
|
|
|
r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
|
|
r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
|
|
r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
|
|
r = (2.0 / 3.0) * r + (1.0 / 3.0) * x / (r * r);
|
|
|
|
return r;
|
|
}
|
|
|
|
double log1p(double x) NOEXCEPT
|
|
{
|
|
return log(1 + x);
|
|
}
|
|
|
|
double acosh(double x) NOEXCEPT
|
|
{
|
|
return log(x + sqrt(x * x - 1));
|
|
}
|
|
|
|
double asinh(double x) NOEXCEPT
|
|
{
|
|
return log(x + sqrt(x * x + 1));
|
|
}
|
|
|
|
double atanh(double x) NOEXCEPT
|
|
{
|
|
return log((1 + x) / (1 - x)) / 2.0;
|
|
}
|
|
|
|
double hypot(double x, double y) NOEXCEPT
|
|
{
|
|
return sqrt(x * x + y * y);
|
|
}
|
|
|
|
double erf(double x) NOEXCEPT
|
|
{
|
|
// algorithm taken from Abramowitz and Stegun (no. 26.2.17)
|
|
double t = 1 / (1 + 0.47047 * fabs(x));
|
|
double poly = t * (0.3480242 + t * (-0.958798 + t * 0.7478556));
|
|
double answer = 1 - poly * exp(-x * x);
|
|
if (x < 0)
|
|
return -answer;
|
|
|
|
return answer;
|
|
}
|
|
|
|
double erfc(double x) NOEXCEPT
|
|
{
|
|
return 1 - erf(x);
|
|
}
|
|
|
|
double nextafter(double, double) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
|
|
float nextafterf(float, float) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
|
|
long double nextafterl(long double, long double) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
|
|
double nexttoward(double, long double) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
|
|
float nexttowardf(float, long double) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
|
|
long double nexttowardl(long double, long double) NOEXCEPT
|
|
{
|
|
TODO();
|
|
}
|
|
}
|