serenity/Kernel/Interrupts/APIC.cpp
Idan Horowitz 8289727fac Kernel: Stop using the make<T> factory method in the Kernel
As make<T> is infallible, it really should not be used anywhere in the
Kernel. Instead replace with fallible `new (nothrow)` calls, that will
eventually be error-propagated.
2022-02-03 23:33:20 +01:00

676 lines
23 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/Assertions.h>
#include <AK/Memory.h>
#include <AK/Singleton.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Arch/x86/MSR.h>
#include <Kernel/Arch/x86/ProcessorInfo.h>
#include <Kernel/Debug.h>
#include <Kernel/Firmware/ACPI/Parser.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/SpuriousInterruptHandler.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PageDirectory.h>
#include <Kernel/Memory/TypedMapping.h>
#include <Kernel/Panic.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Sections.h>
#include <Kernel/Thread.h>
#include <Kernel/Time/APICTimer.h>
#define IRQ_APIC_TIMER (0xfc - IRQ_VECTOR_BASE)
#define IRQ_APIC_IPI (0xfd - IRQ_VECTOR_BASE)
#define IRQ_APIC_ERR (0xfe - IRQ_VECTOR_BASE)
#define IRQ_APIC_SPURIOUS (0xff - IRQ_VECTOR_BASE)
#define APIC_ICR_DELIVERY_PENDING (1 << 12)
#define APIC_ENABLED (1 << 8)
#define APIC_BASE_MSR 0x1b
#define APIC_REGS_MSR_BASE 0x800
#define APIC_REG_ID 0x20
#define APIC_REG_EOI 0xb0
#define APIC_REG_LD 0xd0
#define APIC_REG_DF 0xe0
#define APIC_REG_SIV 0xf0
#define APIC_REG_TPR 0x80
#define APIC_REG_ICR_LOW 0x300
#define APIC_REG_ICR_HIGH 0x310
#define APIC_REG_LVT_TIMER 0x320
#define APIC_REG_LVT_THERMAL 0x330
#define APIC_REG_LVT_PERFORMANCE_COUNTER 0x340
#define APIC_REG_LVT_LINT0 0x350
#define APIC_REG_LVT_LINT1 0x360
#define APIC_REG_LVT_ERR 0x370
#define APIC_REG_TIMER_INITIAL_COUNT 0x380
#define APIC_REG_TIMER_CURRENT_COUNT 0x390
#define APIC_REG_TIMER_CONFIGURATION 0x3e0
namespace Kernel {
static Singleton<APIC> s_apic;
class APICIPIInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICIPIInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICIPIInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICIPIInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "IPI Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
class APICErrInterruptHandler final : public GenericInterruptHandler {
public:
explicit APICErrInterruptHandler(u8 interrupt_vector)
: GenericInterruptHandler(interrupt_vector, true)
{
}
virtual ~APICErrInterruptHandler()
{
}
static void initialize(u8 interrupt_number)
{
auto* handler = new APICErrInterruptHandler(interrupt_number);
handler->register_interrupt_handler();
}
virtual bool handle_interrupt(const RegisterState&) override;
virtual bool eoi() override;
virtual HandlerType type() const override { return HandlerType::IRQHandler; }
virtual StringView purpose() const override { return "SMP Error Handler"sv; }
virtual StringView controller() const override { return nullptr; }
virtual size_t sharing_devices_count() const override { return 0; }
virtual bool is_shared_handler() const override { return false; }
virtual bool is_sharing_with_others() const override { return false; }
private:
};
bool APIC::initialized()
{
return s_apic.is_initialized();
}
APIC& APIC::the()
{
VERIFY(APIC::initialized());
return *s_apic;
}
UNMAP_AFTER_INIT void APIC::initialize()
{
VERIFY(!APIC::initialized());
s_apic.ensure_instance();
}
PhysicalAddress APIC::get_base()
{
MSR msr(APIC_BASE_MSR);
auto base = msr.get();
return PhysicalAddress(base & 0xfffff000);
}
void APIC::set_base(const PhysicalAddress& base)
{
MSR msr(APIC_BASE_MSR);
u64 flags = 1 << 11;
if (m_is_x2)
flags |= 1 << 10;
msr.set(base.get() | flags);
}
void APIC::write_register(u32 offset, u32 value)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
msr.set(value);
} else {
*reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr()) = value;
}
}
u32 APIC::read_register(u32 offset)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (offset >> 4));
return (u32)msr.get();
}
return *reinterpret_cast<volatile u32*>(m_apic_base->vaddr().offset(offset).as_ptr());
}
void APIC::set_lvt(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt);
}
void APIC::set_siv(u32 offset, u8 interrupt)
{
write_register(offset, read_register(offset) | interrupt | APIC_ENABLED);
}
void APIC::wait_for_pending_icr()
{
while ((read_register(APIC_REG_ICR_LOW) & APIC_ICR_DELIVERY_PENDING) != 0) {
IO::delay(200);
}
}
void APIC::write_icr(const ICRReg& icr)
{
if (m_is_x2) {
MSR msr(APIC_REGS_MSR_BASE + (APIC_REG_ICR_LOW >> 4));
msr.set(icr.x2_value());
} else {
write_register(APIC_REG_ICR_HIGH, icr.x_high());
write_register(APIC_REG_ICR_LOW, icr.x_low());
}
}
#define APIC_LVT_TIMER_ONESHOT 0
#define APIC_LVT_TIMER_PERIODIC (1 << 17)
#define APIC_LVT_TIMER_TSCDEADLINE (1 << 18)
#define APIC_LVT_MASKED (1 << 16)
#define APIC_LVT_TRIGGER_LEVEL (1 << 14)
#define APIC_LVT(iv, dm) (((iv)&0xff) | (((dm)&0x7) << 8))
extern "C" void apic_ap_start(void);
extern "C" u16 apic_ap_start_size;
extern "C" u32 ap_cpu_init_stacks;
extern "C" u32 ap_cpu_init_processor_info_array;
extern "C" u32 ap_cpu_init_cr0;
extern "C" u32 ap_cpu_init_cr3;
extern "C" u32 ap_cpu_init_cr4;
extern "C" u32 ap_cpu_gdtr;
extern "C" u32 ap_cpu_idtr;
void APIC::eoi()
{
write_register(APIC_REG_EOI, 0x0);
}
u8 APIC::spurious_interrupt_vector()
{
return IRQ_APIC_SPURIOUS;
}
#define APIC_INIT_VAR_PTR(tpe, vaddr, varname) \
reinterpret_cast<volatile tpe*>(reinterpret_cast<ptrdiff_t>(vaddr) \
+ reinterpret_cast<ptrdiff_t>(&varname) \
- reinterpret_cast<ptrdiff_t>(&apic_ap_start))
UNMAP_AFTER_INIT bool APIC::init_bsp()
{
// FIXME: Use the ACPI MADT table
if (!MSR::have())
return false;
// check if we support local apic
CPUID id(1);
if ((id.edx() & (1 << 9)) == 0)
return false;
if (id.ecx() & (1 << 21))
m_is_x2 = true;
PhysicalAddress apic_base = get_base();
dbgln_if(APIC_DEBUG, "Initializing {}APIC, base: {}", m_is_x2 ? "x2" : "x", apic_base);
set_base(apic_base);
if (!m_is_x2) {
auto region_or_error = MM.allocate_kernel_region(apic_base.page_base(), PAGE_SIZE, {}, Memory::Region::Access::ReadWrite);
if (region_or_error.is_error()) {
dbgln("APIC: Failed to allocate memory for APIC base");
return false;
}
m_apic_base = region_or_error.release_value();
}
auto rsdp = ACPI::StaticParsing::find_rsdp();
if (!rsdp.has_value()) {
dbgln("APIC: RSDP not found");
return false;
}
auto madt_address = ACPI::StaticParsing::find_table(rsdp.value(), "APIC");
if (!madt_address.has_value()) {
dbgln("APIC: MADT table not found");
return false;
}
if (kernel_command_line().is_smp_enabled()) {
auto madt_or_error = Memory::map_typed<ACPI::Structures::MADT>(madt_address.value());
if (madt_or_error.is_error()) {
dbgln("APIC: Failed to map MADT table");
return false;
}
auto madt = madt_or_error.release_value();
size_t entry_index = 0;
size_t entries_length = madt->h.length - sizeof(ACPI::Structures::MADT);
auto* madt_entry = madt->entries;
while (entries_length > 0) {
size_t entry_length = madt_entry->length;
if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::LocalAPIC) {
auto* plapic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalAPIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, xAPIC ID: {}, flags: {:#08x}", entry_index, plapic_entry->acpi_processor_id, plapic_entry->apic_id, plapic_entry->flags);
m_processor_cnt++;
if ((plapic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
} else if (madt_entry->type == (u8)ACPI::Structures::MADTEntryType::Local_x2APIC) {
// Only used for APID IDs >= 255
auto* plx2apic_entry = (const ACPI::Structures::MADTEntries::ProcessorLocalX2APIC*)madt_entry;
dbgln_if(APIC_DEBUG, "APIC: AP found @ MADT entry {}, processor ID: {}, x2APIC ID: {}, flags: {:#08x}", entry_index, plx2apic_entry->acpi_processor_id, plx2apic_entry->apic_id, plx2apic_entry->flags);
m_processor_cnt++;
if ((plx2apic_entry->flags & 0x1) != 0)
m_processor_enabled_cnt++;
}
madt_entry = (ACPI::Structures::MADTEntryHeader*)(VirtualAddress(madt_entry).offset(entry_length).get());
entries_length -= entry_length;
entry_index++;
}
dbgln("APIC processors found: {}, enabled: {}", m_processor_cnt, m_processor_enabled_cnt);
}
if (m_processor_enabled_cnt < 1)
m_processor_enabled_cnt = 1;
if (m_processor_cnt < 1)
m_processor_cnt = 1;
enable(0);
return true;
}
UNMAP_AFTER_INIT static NonnullOwnPtr<Memory::Region> create_identity_mapped_region(PhysicalAddress paddr, size_t size)
{
auto maybe_vmobject = Memory::AnonymousVMObject::try_create_for_physical_range(paddr, size);
// FIXME: Would be nice to be able to return a ErrorOr from here.
VERIFY(!maybe_vmobject.is_error());
auto region_or_error = MM.allocate_kernel_region_with_vmobject(
Memory::VirtualRange { VirtualAddress { static_cast<FlatPtr>(paddr.get()) }, size },
maybe_vmobject.release_value(),
{},
Memory::Region::Access::ReadWriteExecute);
VERIFY(!region_or_error.is_error());
return region_or_error.release_value();
}
UNMAP_AFTER_INIT void APIC::setup_ap_boot_environment()
{
VERIFY(!m_ap_boot_environment);
VERIFY(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Copy the APIC startup code and variables to P0x00008000
// Also account for the data appended to:
// * aps_to_enable u32 values for ap_cpu_init_stacks
// * aps_to_enable u32 values for ap_cpu_init_processor_info_array
constexpr u64 apic_startup_region_base = 0x8000;
VERIFY(apic_startup_region_base + apic_ap_start_size < USER_RANGE_BASE);
auto apic_startup_region = create_identity_mapped_region(PhysicalAddress(apic_startup_region_base), Memory::page_round_up(apic_ap_start_size + (2 * aps_to_enable * sizeof(u32))).release_value_but_fixme_should_propagate_errors());
memcpy(apic_startup_region->vaddr().as_ptr(), reinterpret_cast<const void*>(apic_ap_start), apic_ap_start_size);
// Allocate enough stacks for all APs
m_ap_temporary_boot_stacks.ensure_capacity(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++) {
auto stack_region_or_error = MM.allocate_kernel_region(Thread::default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow);
if (stack_region_or_error.is_error()) {
dbgln("APIC: Failed to allocate stack for AP #{}", i);
return;
}
auto stack_region = stack_region_or_error.release_value();
stack_region->set_stack(true);
m_ap_temporary_boot_stacks.unchecked_append(move(stack_region));
}
// Store pointers to all stacks for the APs to use
auto* ap_stack_array = APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_stacks);
VERIFY(aps_to_enable == m_ap_temporary_boot_stacks.size());
for (size_t i = 0; i < aps_to_enable; i++) {
ap_stack_array[i] = m_ap_temporary_boot_stacks[i]->vaddr().get() + Thread::default_kernel_stack_size;
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] stack at {}", i + 1, VirtualAddress { ap_stack_array[i] });
}
// Allocate Processor structures for all APs and store the pointer to the data
m_ap_processor_info.resize(aps_to_enable);
for (size_t i = 0; i < aps_to_enable; i++)
m_ap_processor_info[i] = adopt_nonnull_own_or_enomem(new (nothrow) Processor()).release_value_but_fixme_should_propagate_errors();
auto* ap_processor_info_array = &ap_stack_array[aps_to_enable];
for (size_t i = 0; i < aps_to_enable; i++) {
ap_processor_info_array[i] = FlatPtr(m_ap_processor_info[i].ptr());
dbgln_if(APIC_DEBUG, "APIC: CPU[{}] processor at {}", i + 1, VirtualAddress { ap_processor_info_array[i] });
}
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_processor_info_array) = FlatPtr(&ap_processor_info_array[0]);
// Store the BSP's CR3 value for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr3) = MM.kernel_page_directory().cr3();
// Store the BSP's GDT and IDT for the APs to use
const auto& gdtr = Processor::current().get_gdtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_gdtr) = FlatPtr(&gdtr);
const auto& idtr = get_idtr();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_idtr) = FlatPtr(&idtr);
// Store the BSP's CR0 and CR4 values for the APs to use
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr0) = read_cr0();
*APIC_INIT_VAR_PTR(u32, apic_startup_region->vaddr().as_ptr(), ap_cpu_init_cr4) = read_cr4();
m_ap_boot_environment = move(apic_startup_region);
}
UNMAP_AFTER_INIT void APIC::do_boot_aps()
{
VERIFY(m_ap_boot_environment);
VERIFY(m_processor_enabled_cnt > 1);
u32 aps_to_enable = m_processor_enabled_cnt - 1;
// Create an idle thread for each processor. We have to do this here
// because we won't be able to send FlushTLB messages, so we have to
// have all memory set up for the threads so that when the APs are
// starting up, they can access all the memory properly
m_ap_idle_threads.resize(aps_to_enable);
for (u32 i = 0; i < aps_to_enable; i++)
m_ap_idle_threads[i] = Scheduler::create_ap_idle_thread(i + 1);
dbgln_if(APIC_DEBUG, "APIC: Starting {} AP(s)", aps_to_enable);
// INIT
write_icr({ 0, 0, ICRReg::INIT, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
IO::delay(10 * 1000);
for (int i = 0; i < 2; i++) {
// SIPI
write_icr({ 0x08, 0, ICRReg::StartUp, ICRReg::Physical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf }); // start execution at P8000
IO::delay(200);
}
// Now wait until the ap_cpu_init_pending variable dropped to 0, which means all APs are initialized and no longer need these special mappings
if (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable) {
dbgln_if(APIC_DEBUG, "APIC: Waiting for {} AP(s) to finish initialization...", aps_to_enable);
do {
// Wait a little bit
IO::delay(200);
} while (m_apic_ap_count.load(AK::MemoryOrder::memory_order_consume) != aps_to_enable);
}
dbgln_if(APIC_DEBUG, "APIC: {} processors are initialized and running", m_processor_enabled_cnt);
// NOTE: Since this region is identity-mapped, we have to unmap it manually to prevent the virtual
// address range from leaking into the general virtual range allocator.
m_ap_boot_environment->unmap(Memory::Region::ShouldDeallocateVirtualRange::No);
m_ap_boot_environment = nullptr;
// When the APs signal that they finished their initialization they have already switched over to their
// idle thread's stack, so the temporary boot stack can be deallocated
m_ap_temporary_boot_stacks.clear();
}
UNMAP_AFTER_INIT void APIC::boot_aps()
{
if (m_processor_enabled_cnt <= 1)
return;
// We split this into another call because do_boot_aps() will cause
// MM calls upon exit, and we don't want to call smp_enable before that
do_boot_aps();
// Enable SMP, which means IPIs may now be sent
Processor::smp_enable();
dbgln_if(APIC_DEBUG, "All processors initialized and waiting, trigger all to continue");
// Now trigger all APs to continue execution (need to do this after
// the regions have been freed so that we don't trigger IPIs
m_apic_ap_continue.store(1, AK::MemoryOrder::memory_order_release);
}
UNMAP_AFTER_INIT void APIC::enable(u32 cpu)
{
VERIFY(m_is_x2 || cpu < 8);
u32 apic_id;
if (m_is_x2) {
dbgln_if(APIC_DEBUG, "Enable x2APIC on CPU #{}", cpu);
// We need to enable x2 mode on each core independently
set_base(get_base());
apic_id = read_register(APIC_REG_ID);
} else {
dbgln_if(APIC_DEBUG, "Setting logical xAPIC ID for CPU #{}", cpu);
// Use the CPU# as logical apic id
VERIFY(cpu <= 8);
write_register(APIC_REG_LD, (read_register(APIC_REG_LD) & 0x00ffffff) | (cpu << 24));
// read it back to make sure it's actually set
apic_id = read_register(APIC_REG_LD) >> 24;
}
dbgln_if(APIC_DEBUG, "CPU #{} apic id: {}", cpu, apic_id);
Processor::current().info().set_apic_id(apic_id);
dbgln_if(APIC_DEBUG, "Enabling local APIC for CPU #{}, logical APIC ID: {}", cpu, apic_id);
if (cpu == 0) {
SpuriousInterruptHandler::initialize(IRQ_APIC_SPURIOUS);
APICErrInterruptHandler::initialize(IRQ_APIC_ERR);
// register IPI interrupt vector
APICIPIInterruptHandler::initialize(IRQ_APIC_IPI);
}
if (!m_is_x2) {
// local destination mode (flat mode), not supported in x2 mode
write_register(APIC_REG_DF, 0xf0000000);
}
// set error interrupt vector
set_lvt(APIC_REG_LVT_ERR, IRQ_APIC_ERR);
// set spurious interrupt vector
set_siv(APIC_REG_SIV, IRQ_APIC_SPURIOUS);
write_register(APIC_REG_LVT_TIMER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_THERMAL, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_PERFORMANCE_COUNTER, APIC_LVT(0, 0) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT0, APIC_LVT(0, 7) | APIC_LVT_MASKED);
write_register(APIC_REG_LVT_LINT1, APIC_LVT(0, 0) | APIC_LVT_TRIGGER_LEVEL);
write_register(APIC_REG_TPR, 0);
}
Thread* APIC::get_idle_thread(u32 cpu) const
{
VERIFY(cpu > 0);
return m_ap_idle_threads[cpu - 1];
}
UNMAP_AFTER_INIT void APIC::init_finished(u32 cpu)
{
// This method is called once the boot stack is no longer needed
VERIFY(cpu > 0);
VERIFY(cpu < m_processor_enabled_cnt);
// Since we're waiting on other APs here, we shouldn't have the
// scheduler lock
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
// Notify the BSP that we are done initializing. It will unmap the startup data at P8000
m_apic_ap_count.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
dbgln_if(APIC_DEBUG, "APIC: CPU #{} initialized, waiting for all others", cpu);
// The reason we're making all APs wait until the BSP signals them is that
// we don't want APs to trigger IPIs (e.g. through MM) while the BSP
// is unable to process them
while (!m_apic_ap_continue.load(AK::MemoryOrder::memory_order_consume)) {
IO::delay(200);
}
dbgln_if(APIC_DEBUG, "APIC: CPU #{} continues, all others are initialized", cpu);
// do_boot_aps() freed memory, so we need to update our tlb
Processor::flush_entire_tlb_local();
// Now enable all the interrupts
APIC::the().enable(cpu);
}
void APIC::broadcast_ipi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Broadcast IPI from CPU #{}", Processor::current_id());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, 0xffffffff, ICRReg::Fixed, ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::AllExcludingSelf });
}
void APIC::send_ipi(u32 cpu)
{
dbgln_if(APIC_SMP_DEBUG, "SMP: Send IPI from CPU #{} to CPU #{}", Processor::current_id(), cpu);
VERIFY(cpu != Processor::current_id());
VERIFY(cpu < Processor::count());
wait_for_pending_icr();
write_icr({ IRQ_APIC_IPI + IRQ_VECTOR_BASE, m_is_x2 ? Processor::by_id(cpu).info().apic_id() : cpu, ICRReg::Fixed, m_is_x2 ? ICRReg::Physical : ICRReg::Logical, ICRReg::Assert, ICRReg::TriggerMode::Edge, ICRReg::NoShorthand });
}
UNMAP_AFTER_INIT APICTimer* APIC::initialize_timers(HardwareTimerBase& calibration_timer)
{
if (!m_apic_base && !m_is_x2)
return nullptr;
// We should only initialize and calibrate the APIC timer once on the BSP!
VERIFY(Processor::is_bootstrap_processor());
VERIFY(!m_apic_timer);
m_apic_timer = APICTimer::initialize(IRQ_APIC_TIMER, calibration_timer);
return m_apic_timer;
}
void APIC::setup_local_timer(u32 ticks, TimerMode timer_mode, bool enable)
{
u32 flags = 0;
switch (timer_mode) {
case TimerMode::OneShot:
flags |= APIC_LVT_TIMER_ONESHOT;
break;
case TimerMode::Periodic:
flags |= APIC_LVT_TIMER_PERIODIC;
break;
case TimerMode::TSCDeadline:
flags |= APIC_LVT_TIMER_TSCDEADLINE;
break;
}
if (!enable)
flags |= APIC_LVT_MASKED;
write_register(APIC_REG_LVT_TIMER, APIC_LVT(IRQ_APIC_TIMER + IRQ_VECTOR_BASE, 0) | flags);
u32 config = read_register(APIC_REG_TIMER_CONFIGURATION);
config &= ~0xf; // clear divisor (bits 0-3)
switch (get_timer_divisor()) {
case 1:
config |= (1 << 3) | 3;
break;
case 2:
break;
case 4:
config |= 1;
break;
case 8:
config |= 2;
break;
case 16:
config |= 3;
break;
case 32:
config |= (1 << 3);
break;
case 64:
config |= (1 << 3) | 1;
break;
case 128:
config |= (1 << 3) | 2;
break;
default:
VERIFY_NOT_REACHED();
}
write_register(APIC_REG_TIMER_CONFIGURATION, config);
if (timer_mode == TimerMode::Periodic)
write_register(APIC_REG_TIMER_INITIAL_COUNT, ticks / get_timer_divisor());
}
u32 APIC::get_timer_current_count()
{
return read_register(APIC_REG_TIMER_CURRENT_COUNT);
}
u32 APIC::get_timer_divisor()
{
return 16;
}
bool APICIPIInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln_if(APIC_SMP_DEBUG, "APIC IPI on CPU #{}", Processor::current_id());
return true;
}
bool APICIPIInterruptHandler::eoi()
{
dbgln_if(APIC_SMP_DEBUG, "SMP: IPI EOI");
APIC::the().eoi();
return true;
}
bool APICErrInterruptHandler::handle_interrupt(const RegisterState&)
{
dbgln("APIC: SMP error on CPU #{}", Processor::current_id());
return true;
}
bool APICErrInterruptHandler::eoi()
{
APIC::the().eoi();
return true;
}
bool HardwareTimer<GenericInterruptHandler>::eoi()
{
APIC::the().eoi();
return true;
}
}