mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-24 02:12:09 -05:00
45cf40653a
Apologies for the enormous commit, but I don't see a way to split this up nicely. In the vast majority of cases it's a simple change. A few extra places can use TRY instead of manual error checking though. :^)
356 lines
13 KiB
C++
356 lines
13 KiB
C++
/*
|
|
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "NVMeController.h"
|
|
#include "AK/Format.h"
|
|
#include <AK/RefPtr.h>
|
|
#include <AK/Types.h>
|
|
#include <Kernel/Arch/x86/IO.h>
|
|
#include <Kernel/Arch/x86/Processor.h>
|
|
#include <Kernel/Bus/PCI/API.h>
|
|
#include <Kernel/Devices/Device.h>
|
|
#include <Kernel/FileSystem/ProcFS.h>
|
|
#include <Kernel/Sections.h>
|
|
|
|
namespace Kernel {
|
|
Atomic<u8> NVMeController::controller_id {};
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<NonnullRefPtr<NVMeController>> NVMeController::try_initialize(const Kernel::PCI::DeviceIdentifier& device_identifier)
|
|
{
|
|
auto controller = TRY(adopt_nonnull_ref_or_enomem(new NVMeController(device_identifier)));
|
|
TRY(controller->initialize());
|
|
NVMeController::controller_id++;
|
|
return controller;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT NVMeController::NVMeController(const PCI::DeviceIdentifier& device_identifier)
|
|
: PCI::Device(device_identifier.address())
|
|
, m_pci_device_id(device_identifier)
|
|
{
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::initialize()
|
|
{
|
|
// Nr of queues = one queue per core
|
|
auto nr_of_queues = Processor::count();
|
|
auto irq = m_pci_device_id.interrupt_line().value();
|
|
|
|
PCI::enable_memory_space(m_pci_device_id.address());
|
|
PCI::enable_bus_mastering(m_pci_device_id.address());
|
|
m_bar = PCI::get_BAR0(m_pci_device_id.address()) & BAR_ADDR_MASK;
|
|
static_assert(sizeof(ControllerRegister) == REG_SQ0TDBL_START);
|
|
static_assert(sizeof(NVMeSubmission) == (1 << SQ_WIDTH));
|
|
|
|
// Map only until doorbell register for the controller
|
|
// Queues will individually map the doorbell register respectively
|
|
m_controller_regs = TRY(Memory::map_typed_writable<volatile ControllerRegister>(PhysicalAddress(m_bar)));
|
|
|
|
auto caps = m_controller_regs->cap;
|
|
m_ready_timeout = Time::from_milliseconds((CAP_TO(caps) + 1) * 500); // CAP.TO is in 500ms units
|
|
|
|
calculate_doorbell_stride();
|
|
TRY(create_admin_queue(irq));
|
|
VERIFY(m_admin_queue_ready == true);
|
|
|
|
VERIFY(IO_QUEUE_SIZE < MQES(caps));
|
|
dbgln_if(NVME_DEBUG, "NVMe: IO queue depth is: {}", IO_QUEUE_SIZE);
|
|
|
|
// Create an IO queue per core
|
|
for (u32 cpuid = 0; cpuid < nr_of_queues; ++cpuid) {
|
|
// qid is zero is used for admin queue
|
|
TRY(create_io_queue(irq, cpuid + 1));
|
|
}
|
|
TRY(identify_and_init_namespaces());
|
|
return {};
|
|
}
|
|
|
|
bool NVMeController::wait_for_ready(bool expected_ready_bit_value)
|
|
{
|
|
static constexpr size_t one_ms_io_delay = 1000;
|
|
auto wait_iterations = m_ready_timeout.to_milliseconds();
|
|
|
|
u32 expected_rdy = expected_ready_bit_value ? 1 : 0;
|
|
while (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
|
|
IO::delay(one_ms_io_delay);
|
|
|
|
if (--wait_iterations == 0) {
|
|
if (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
|
|
dbgln_if(NVME_DEBUG, "NVMEController: CSTS.RDY still not set to {} after {} ms", expected_rdy, m_ready_timeout.to_milliseconds());
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NVMeController::reset_controller()
|
|
{
|
|
if ((m_controller_regs->cc & (1 << CC_EN_BIT)) != 0) {
|
|
// If the EN bit is already set, we need to wait
|
|
// until the RDY bit is 1, otherwise the behavior is undefined
|
|
if (!wait_for_ready(true))
|
|
return false;
|
|
}
|
|
|
|
auto cc = m_controller_regs->cc;
|
|
|
|
cc = cc & ~(1 << CC_EN_BIT);
|
|
|
|
m_controller_regs->cc = cc;
|
|
|
|
full_memory_barrier();
|
|
|
|
// Wait until the RDY bit is cleared
|
|
if (!wait_for_ready(false))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool NVMeController::start_controller()
|
|
{
|
|
if (!(m_controller_regs->cc & (1 << CC_EN_BIT))) {
|
|
// If the EN bit is not already set, we need to wait
|
|
// until the RDY bit is 0, otherwise the behavior is undefined
|
|
if (!wait_for_ready(false))
|
|
return false;
|
|
}
|
|
|
|
auto cc = m_controller_regs->cc;
|
|
|
|
cc = cc | (1 << CC_EN_BIT);
|
|
cc = cc | (CQ_WIDTH << CC_IOCQES_BIT);
|
|
cc = cc | (SQ_WIDTH << CC_IOSQES_BIT);
|
|
|
|
m_controller_regs->cc = cc;
|
|
|
|
full_memory_barrier();
|
|
|
|
// Wait until the RDY bit is set
|
|
if (!wait_for_ready(true))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT u32 NVMeController::get_admin_q_dept()
|
|
{
|
|
u32 aqa = m_controller_regs->aqa;
|
|
// Queue depth is 0 based
|
|
u32 q_depth = min(ACQ_SIZE(aqa), ASQ_SIZE(aqa)) + 1;
|
|
dbgln_if(NVME_DEBUG, "NVMe: Admin queue depth is {}", q_depth);
|
|
return q_depth;
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::identify_and_init_namespaces()
|
|
{
|
|
|
|
RefPtr<Memory::PhysicalPage> prp_dma_buffer;
|
|
OwnPtr<Memory::Region> prp_dma_region;
|
|
auto namespace_data_struct = TRY(ByteBuffer::create_zeroed(NVMe_IDENTIFY_SIZE));
|
|
u32 active_namespace_list[NVMe_IDENTIFY_SIZE / sizeof(u32)];
|
|
|
|
{
|
|
auto buffer = TRY(MM.allocate_dma_buffer_page("Identify PRP", Memory::Region::Access::ReadWrite, prp_dma_buffer));
|
|
prp_dma_region = move(buffer);
|
|
}
|
|
|
|
// Get the active namespace
|
|
{
|
|
NVMeSubmission sub {};
|
|
u16 status = 0;
|
|
sub.op = OP_ADMIN_IDENTIFY;
|
|
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
|
|
sub.identify.cns = NVMe_CNS_ID_ACTIVE_NS & 0xff;
|
|
status = submit_admin_command(sub, true);
|
|
if (status) {
|
|
dmesgln("Failed to identify active namespace command");
|
|
return EFAULT;
|
|
}
|
|
if (void* fault_at; !safe_memcpy(active_namespace_list, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
|
|
return EFAULT;
|
|
}
|
|
}
|
|
// Get the NAMESPACE attributes
|
|
{
|
|
NVMeSubmission sub {};
|
|
IdentifyNamespace id_ns {};
|
|
u16 status = 0;
|
|
for (auto nsid : active_namespace_list) {
|
|
memset(prp_dma_region->vaddr().as_ptr(), 0, NVMe_IDENTIFY_SIZE);
|
|
// Invalid NS
|
|
if (nsid == 0)
|
|
break;
|
|
sub.op = OP_ADMIN_IDENTIFY;
|
|
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
|
|
sub.identify.cns = NVMe_CNS_ID_NS & 0xff;
|
|
sub.identify.nsid = nsid;
|
|
status = submit_admin_command(sub, true);
|
|
if (status) {
|
|
dmesgln("Failed identify namespace with nsid {}", nsid);
|
|
return EFAULT;
|
|
}
|
|
static_assert(sizeof(IdentifyNamespace) == NVMe_IDENTIFY_SIZE);
|
|
if (void* fault_at; !safe_memcpy(&id_ns, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
|
|
return EFAULT;
|
|
}
|
|
auto val = get_ns_features(id_ns);
|
|
auto block_counts = val.get<0>();
|
|
auto block_size = 1 << val.get<1>();
|
|
|
|
dbgln_if(NVME_DEBUG, "NVMe: Block count is {} and Block size is {}", block_counts, block_size);
|
|
|
|
m_namespaces.append(TRY(NVMeNameSpace::try_create(m_queues, controller_id.load(), nsid, block_counts, block_size)));
|
|
m_device_count++;
|
|
dbgln_if(NVME_DEBUG, "NVMe: Initialized namespace with NSID: {}", nsid);
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
UNMAP_AFTER_INIT Tuple<u64, u8> NVMeController::get_ns_features(IdentifyNamespace& identify_data_struct)
|
|
{
|
|
auto flbas = identify_data_struct.flbas & FLBA_SIZE_MASK;
|
|
auto namespace_size = identify_data_struct.nsze;
|
|
auto lba_format = identify_data_struct.lbaf[flbas];
|
|
|
|
auto lba_size = (lba_format & LBA_SIZE_MASK) >> 16;
|
|
return Tuple<u64, u8>(namespace_size, lba_size);
|
|
}
|
|
|
|
RefPtr<StorageDevice> NVMeController::device(u32 index) const
|
|
{
|
|
return m_namespaces.at(index);
|
|
}
|
|
|
|
size_t NVMeController::devices_count() const
|
|
{
|
|
return m_device_count;
|
|
}
|
|
|
|
bool NVMeController::reset()
|
|
{
|
|
if (!reset_controller())
|
|
return false;
|
|
if (!start_controller())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool NVMeController::shutdown()
|
|
{
|
|
TODO();
|
|
return false;
|
|
}
|
|
|
|
void NVMeController::complete_current_request([[maybe_unused]] AsyncDeviceRequest::RequestResult result)
|
|
{
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_admin_queue(u8 irq)
|
|
{
|
|
auto qdepth = get_admin_q_dept();
|
|
OwnPtr<Memory::Region> cq_dma_region;
|
|
NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
|
|
OwnPtr<Memory::Region> sq_dma_region;
|
|
NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
|
|
auto cq_size = round_up_to_power_of_two(CQ_SIZE(qdepth), 4096);
|
|
auto sq_size = round_up_to_power_of_two(SQ_SIZE(qdepth), 4096);
|
|
if (!reset_controller()) {
|
|
dmesgln("Failed to reset the NVMe controller");
|
|
return EFAULT;
|
|
}
|
|
{
|
|
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "Admin CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
|
|
cq_dma_region = move(buffer);
|
|
}
|
|
|
|
// Phase bit is important to determine completion, so zero out the space
|
|
// so that we don't get any garbage phase bit value
|
|
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
|
|
|
|
{
|
|
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "Admin SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
|
|
sq_dma_region = move(buffer);
|
|
}
|
|
auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + REG_SQ0TDBL_START)));
|
|
|
|
m_admin_queue = TRY(NVMeQueue::try_create(0, irq, qdepth, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs)));
|
|
|
|
m_controller_regs->acq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
|
|
m_controller_regs->asq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
|
|
|
|
if (!start_controller()) {
|
|
dmesgln("Failed to restart the NVMe controller");
|
|
return EFAULT;
|
|
}
|
|
set_admin_queue_ready_flag();
|
|
m_admin_queue->enable_interrupts();
|
|
dbgln_if(NVME_DEBUG, "NVMe: Admin queue created");
|
|
return {};
|
|
}
|
|
|
|
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_io_queue(u8 irq, u8 qid)
|
|
{
|
|
OwnPtr<Memory::Region> cq_dma_region;
|
|
NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
|
|
OwnPtr<Memory::Region> sq_dma_region;
|
|
NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
|
|
auto cq_size = round_up_to_power_of_two(CQ_SIZE(IO_QUEUE_SIZE), 4096);
|
|
auto sq_size = round_up_to_power_of_two(SQ_SIZE(IO_QUEUE_SIZE), 4096);
|
|
|
|
{
|
|
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "IO CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
|
|
cq_dma_region = move(buffer);
|
|
}
|
|
|
|
// Phase bit is important to determine completion, so zero out the space
|
|
// so that we don't get any garbage phase bit value
|
|
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
|
|
|
|
{
|
|
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "IO SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
|
|
sq_dma_region = move(buffer);
|
|
}
|
|
|
|
{
|
|
NVMeSubmission sub {};
|
|
sub.op = OP_ADMIN_CREATE_COMPLETION_QUEUE;
|
|
sub.create_cq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
|
|
sub.create_cq.cqid = qid;
|
|
// The queue size is 0 based
|
|
sub.create_cq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
|
|
auto flags = QUEUE_IRQ_ENABLED | QUEUE_PHY_CONTIGUOUS;
|
|
// TODO: Eventually move to MSI.
|
|
// For now using pin based interrupts. Clear the first 16 bits
|
|
// to use pin-based interrupts.
|
|
sub.create_cq.cq_flags = AK::convert_between_host_and_little_endian(flags & 0xFFFF);
|
|
submit_admin_command(sub, true);
|
|
}
|
|
{
|
|
NVMeSubmission sub {};
|
|
sub.op = OP_ADMIN_CREATE_SUBMISSION_QUEUE;
|
|
sub.create_sq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
|
|
sub.create_sq.sqid = qid;
|
|
// The queue size is 0 based
|
|
sub.create_sq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
|
|
auto flags = QUEUE_IRQ_ENABLED | QUEUE_PHY_CONTIGUOUS;
|
|
sub.create_sq.cqid = qid;
|
|
sub.create_sq.sq_flags = AK::convert_between_host_and_little_endian(flags);
|
|
submit_admin_command(sub, true);
|
|
}
|
|
|
|
auto queue_doorbell_offset = REG_SQ0TDBL_START + ((2 * qid) * (4 << m_dbl_stride));
|
|
auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + queue_doorbell_offset)));
|
|
|
|
m_queues.append(TRY(NVMeQueue::try_create(qid, irq, IO_QUEUE_SIZE, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs))));
|
|
m_queues.last().enable_interrupts();
|
|
dbgln_if(NVME_DEBUG, "NVMe: Created IO Queue with QID{}", m_queues.size());
|
|
return {};
|
|
}
|
|
}
|