serenity/Kernel/Storage/NVMe/NVMeController.cpp
Sam Atkins 45cf40653a Everywhere: Convert ByteBuffer factory methods from Optional -> ErrorOr
Apologies for the enormous commit, but I don't see a way to split this
up nicely. In the vast majority of cases it's a simple change. A few
extra places can use TRY instead of manual error checking though. :^)
2022-01-24 22:36:09 +01:00

356 lines
13 KiB
C++

/*
* Copyright (c) 2021, Pankaj R <pankydev8@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "NVMeController.h"
#include "AK/Format.h"
#include <AK/RefPtr.h>
#include <AK/Types.h>
#include <Kernel/Arch/x86/IO.h>
#include <Kernel/Arch/x86/Processor.h>
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Devices/Device.h>
#include <Kernel/FileSystem/ProcFS.h>
#include <Kernel/Sections.h>
namespace Kernel {
Atomic<u8> NVMeController::controller_id {};
UNMAP_AFTER_INIT ErrorOr<NonnullRefPtr<NVMeController>> NVMeController::try_initialize(const Kernel::PCI::DeviceIdentifier& device_identifier)
{
auto controller = TRY(adopt_nonnull_ref_or_enomem(new NVMeController(device_identifier)));
TRY(controller->initialize());
NVMeController::controller_id++;
return controller;
}
UNMAP_AFTER_INIT NVMeController::NVMeController(const PCI::DeviceIdentifier& device_identifier)
: PCI::Device(device_identifier.address())
, m_pci_device_id(device_identifier)
{
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::initialize()
{
// Nr of queues = one queue per core
auto nr_of_queues = Processor::count();
auto irq = m_pci_device_id.interrupt_line().value();
PCI::enable_memory_space(m_pci_device_id.address());
PCI::enable_bus_mastering(m_pci_device_id.address());
m_bar = PCI::get_BAR0(m_pci_device_id.address()) & BAR_ADDR_MASK;
static_assert(sizeof(ControllerRegister) == REG_SQ0TDBL_START);
static_assert(sizeof(NVMeSubmission) == (1 << SQ_WIDTH));
// Map only until doorbell register for the controller
// Queues will individually map the doorbell register respectively
m_controller_regs = TRY(Memory::map_typed_writable<volatile ControllerRegister>(PhysicalAddress(m_bar)));
auto caps = m_controller_regs->cap;
m_ready_timeout = Time::from_milliseconds((CAP_TO(caps) + 1) * 500); // CAP.TO is in 500ms units
calculate_doorbell_stride();
TRY(create_admin_queue(irq));
VERIFY(m_admin_queue_ready == true);
VERIFY(IO_QUEUE_SIZE < MQES(caps));
dbgln_if(NVME_DEBUG, "NVMe: IO queue depth is: {}", IO_QUEUE_SIZE);
// Create an IO queue per core
for (u32 cpuid = 0; cpuid < nr_of_queues; ++cpuid) {
// qid is zero is used for admin queue
TRY(create_io_queue(irq, cpuid + 1));
}
TRY(identify_and_init_namespaces());
return {};
}
bool NVMeController::wait_for_ready(bool expected_ready_bit_value)
{
static constexpr size_t one_ms_io_delay = 1000;
auto wait_iterations = m_ready_timeout.to_milliseconds();
u32 expected_rdy = expected_ready_bit_value ? 1 : 0;
while (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
IO::delay(one_ms_io_delay);
if (--wait_iterations == 0) {
if (((m_controller_regs->csts >> CSTS_RDY_BIT) & 0x1) != expected_rdy) {
dbgln_if(NVME_DEBUG, "NVMEController: CSTS.RDY still not set to {} after {} ms", expected_rdy, m_ready_timeout.to_milliseconds());
return false;
}
break;
}
}
return true;
}
bool NVMeController::reset_controller()
{
if ((m_controller_regs->cc & (1 << CC_EN_BIT)) != 0) {
// If the EN bit is already set, we need to wait
// until the RDY bit is 1, otherwise the behavior is undefined
if (!wait_for_ready(true))
return false;
}
auto cc = m_controller_regs->cc;
cc = cc & ~(1 << CC_EN_BIT);
m_controller_regs->cc = cc;
full_memory_barrier();
// Wait until the RDY bit is cleared
if (!wait_for_ready(false))
return false;
return true;
}
bool NVMeController::start_controller()
{
if (!(m_controller_regs->cc & (1 << CC_EN_BIT))) {
// If the EN bit is not already set, we need to wait
// until the RDY bit is 0, otherwise the behavior is undefined
if (!wait_for_ready(false))
return false;
}
auto cc = m_controller_regs->cc;
cc = cc | (1 << CC_EN_BIT);
cc = cc | (CQ_WIDTH << CC_IOCQES_BIT);
cc = cc | (SQ_WIDTH << CC_IOSQES_BIT);
m_controller_regs->cc = cc;
full_memory_barrier();
// Wait until the RDY bit is set
if (!wait_for_ready(true))
return false;
return true;
}
UNMAP_AFTER_INIT u32 NVMeController::get_admin_q_dept()
{
u32 aqa = m_controller_regs->aqa;
// Queue depth is 0 based
u32 q_depth = min(ACQ_SIZE(aqa), ASQ_SIZE(aqa)) + 1;
dbgln_if(NVME_DEBUG, "NVMe: Admin queue depth is {}", q_depth);
return q_depth;
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::identify_and_init_namespaces()
{
RefPtr<Memory::PhysicalPage> prp_dma_buffer;
OwnPtr<Memory::Region> prp_dma_region;
auto namespace_data_struct = TRY(ByteBuffer::create_zeroed(NVMe_IDENTIFY_SIZE));
u32 active_namespace_list[NVMe_IDENTIFY_SIZE / sizeof(u32)];
{
auto buffer = TRY(MM.allocate_dma_buffer_page("Identify PRP", Memory::Region::Access::ReadWrite, prp_dma_buffer));
prp_dma_region = move(buffer);
}
// Get the active namespace
{
NVMeSubmission sub {};
u16 status = 0;
sub.op = OP_ADMIN_IDENTIFY;
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
sub.identify.cns = NVMe_CNS_ID_ACTIVE_NS & 0xff;
status = submit_admin_command(sub, true);
if (status) {
dmesgln("Failed to identify active namespace command");
return EFAULT;
}
if (void* fault_at; !safe_memcpy(active_namespace_list, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
return EFAULT;
}
}
// Get the NAMESPACE attributes
{
NVMeSubmission sub {};
IdentifyNamespace id_ns {};
u16 status = 0;
for (auto nsid : active_namespace_list) {
memset(prp_dma_region->vaddr().as_ptr(), 0, NVMe_IDENTIFY_SIZE);
// Invalid NS
if (nsid == 0)
break;
sub.op = OP_ADMIN_IDENTIFY;
sub.identify.data_ptr.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(prp_dma_buffer->paddr().as_ptr()));
sub.identify.cns = NVMe_CNS_ID_NS & 0xff;
sub.identify.nsid = nsid;
status = submit_admin_command(sub, true);
if (status) {
dmesgln("Failed identify namespace with nsid {}", nsid);
return EFAULT;
}
static_assert(sizeof(IdentifyNamespace) == NVMe_IDENTIFY_SIZE);
if (void* fault_at; !safe_memcpy(&id_ns, prp_dma_region->vaddr().as_ptr(), NVMe_IDENTIFY_SIZE, fault_at)) {
return EFAULT;
}
auto val = get_ns_features(id_ns);
auto block_counts = val.get<0>();
auto block_size = 1 << val.get<1>();
dbgln_if(NVME_DEBUG, "NVMe: Block count is {} and Block size is {}", block_counts, block_size);
m_namespaces.append(TRY(NVMeNameSpace::try_create(m_queues, controller_id.load(), nsid, block_counts, block_size)));
m_device_count++;
dbgln_if(NVME_DEBUG, "NVMe: Initialized namespace with NSID: {}", nsid);
}
}
return {};
}
UNMAP_AFTER_INIT Tuple<u64, u8> NVMeController::get_ns_features(IdentifyNamespace& identify_data_struct)
{
auto flbas = identify_data_struct.flbas & FLBA_SIZE_MASK;
auto namespace_size = identify_data_struct.nsze;
auto lba_format = identify_data_struct.lbaf[flbas];
auto lba_size = (lba_format & LBA_SIZE_MASK) >> 16;
return Tuple<u64, u8>(namespace_size, lba_size);
}
RefPtr<StorageDevice> NVMeController::device(u32 index) const
{
return m_namespaces.at(index);
}
size_t NVMeController::devices_count() const
{
return m_device_count;
}
bool NVMeController::reset()
{
if (!reset_controller())
return false;
if (!start_controller())
return false;
return true;
}
bool NVMeController::shutdown()
{
TODO();
return false;
}
void NVMeController::complete_current_request([[maybe_unused]] AsyncDeviceRequest::RequestResult result)
{
VERIFY_NOT_REACHED();
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_admin_queue(u8 irq)
{
auto qdepth = get_admin_q_dept();
OwnPtr<Memory::Region> cq_dma_region;
NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
OwnPtr<Memory::Region> sq_dma_region;
NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
auto cq_size = round_up_to_power_of_two(CQ_SIZE(qdepth), 4096);
auto sq_size = round_up_to_power_of_two(SQ_SIZE(qdepth), 4096);
if (!reset_controller()) {
dmesgln("Failed to reset the NVMe controller");
return EFAULT;
}
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "Admin CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
cq_dma_region = move(buffer);
}
// Phase bit is important to determine completion, so zero out the space
// so that we don't get any garbage phase bit value
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "Admin SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
sq_dma_region = move(buffer);
}
auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + REG_SQ0TDBL_START)));
m_admin_queue = TRY(NVMeQueue::try_create(0, irq, qdepth, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs)));
m_controller_regs->acq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
m_controller_regs->asq = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
if (!start_controller()) {
dmesgln("Failed to restart the NVMe controller");
return EFAULT;
}
set_admin_queue_ready_flag();
m_admin_queue->enable_interrupts();
dbgln_if(NVME_DEBUG, "NVMe: Admin queue created");
return {};
}
UNMAP_AFTER_INIT ErrorOr<void> NVMeController::create_io_queue(u8 irq, u8 qid)
{
OwnPtr<Memory::Region> cq_dma_region;
NonnullRefPtrVector<Memory::PhysicalPage> cq_dma_pages;
OwnPtr<Memory::Region> sq_dma_region;
NonnullRefPtrVector<Memory::PhysicalPage> sq_dma_pages;
auto cq_size = round_up_to_power_of_two(CQ_SIZE(IO_QUEUE_SIZE), 4096);
auto sq_size = round_up_to_power_of_two(SQ_SIZE(IO_QUEUE_SIZE), 4096);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(cq_size, "IO CQ queue", Memory::Region::Access::ReadWrite, cq_dma_pages));
cq_dma_region = move(buffer);
}
// Phase bit is important to determine completion, so zero out the space
// so that we don't get any garbage phase bit value
memset(cq_dma_region->vaddr().as_ptr(), 0, cq_size);
{
auto buffer = TRY(MM.allocate_dma_buffer_pages(sq_size, "IO SQ queue", Memory::Region::Access::ReadWrite, sq_dma_pages));
sq_dma_region = move(buffer);
}
{
NVMeSubmission sub {};
sub.op = OP_ADMIN_CREATE_COMPLETION_QUEUE;
sub.create_cq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(cq_dma_pages.first().paddr().as_ptr()));
sub.create_cq.cqid = qid;
// The queue size is 0 based
sub.create_cq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
auto flags = QUEUE_IRQ_ENABLED | QUEUE_PHY_CONTIGUOUS;
// TODO: Eventually move to MSI.
// For now using pin based interrupts. Clear the first 16 bits
// to use pin-based interrupts.
sub.create_cq.cq_flags = AK::convert_between_host_and_little_endian(flags & 0xFFFF);
submit_admin_command(sub, true);
}
{
NVMeSubmission sub {};
sub.op = OP_ADMIN_CREATE_SUBMISSION_QUEUE;
sub.create_sq.prp1 = reinterpret_cast<u64>(AK::convert_between_host_and_little_endian(sq_dma_pages.first().paddr().as_ptr()));
sub.create_sq.sqid = qid;
// The queue size is 0 based
sub.create_sq.qsize = AK::convert_between_host_and_little_endian(IO_QUEUE_SIZE - 1);
auto flags = QUEUE_IRQ_ENABLED | QUEUE_PHY_CONTIGUOUS;
sub.create_sq.cqid = qid;
sub.create_sq.sq_flags = AK::convert_between_host_and_little_endian(flags);
submit_admin_command(sub, true);
}
auto queue_doorbell_offset = REG_SQ0TDBL_START + ((2 * qid) * (4 << m_dbl_stride));
auto doorbell_regs = TRY(Memory::map_typed_writable<volatile DoorbellRegister>(PhysicalAddress(m_bar + queue_doorbell_offset)));
m_queues.append(TRY(NVMeQueue::try_create(qid, irq, IO_QUEUE_SIZE, move(cq_dma_region), cq_dma_pages, move(sq_dma_region), sq_dma_pages, move(doorbell_regs))));
m_queues.last().enable_interrupts();
dbgln_if(NVME_DEBUG, "NVMe: Created IO Queue with QID{}", m_queues.size());
return {};
}
}