mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-23 09:51:57 -05:00
a0f404551e
We ignore allocation failures above the first 32 guaranteed thread slots, and just flag our future-selves to finalize these threads at a later point.
1334 lines
47 KiB
C++
1334 lines
47 KiB
C++
/*
|
|
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include <AK/ScopeGuard.h>
|
|
#include <AK/Singleton.h>
|
|
#include <AK/StringBuilder.h>
|
|
#include <AK/Time.h>
|
|
#include <Kernel/Arch/SmapDisabler.h>
|
|
#include <Kernel/Arch/x86/InterruptDisabler.h>
|
|
#include <Kernel/Arch/x86/TrapFrame.h>
|
|
#include <Kernel/Debug.h>
|
|
#include <Kernel/Devices/KCOVDevice.h>
|
|
#include <Kernel/FileSystem/OpenFileDescription.h>
|
|
#include <Kernel/KSyms.h>
|
|
#include <Kernel/Memory/MemoryManager.h>
|
|
#include <Kernel/Memory/PageDirectory.h>
|
|
#include <Kernel/Memory/ScopedAddressSpaceSwitcher.h>
|
|
#include <Kernel/Panic.h>
|
|
#include <Kernel/PerformanceEventBuffer.h>
|
|
#include <Kernel/Process.h>
|
|
#include <Kernel/ProcessExposed.h>
|
|
#include <Kernel/Scheduler.h>
|
|
#include <Kernel/Sections.h>
|
|
#include <Kernel/Thread.h>
|
|
#include <Kernel/ThreadTracer.h>
|
|
#include <Kernel/TimerQueue.h>
|
|
#include <Kernel/kstdio.h>
|
|
#include <LibC/signal_numbers.h>
|
|
|
|
namespace Kernel {
|
|
|
|
static Singleton<SpinlockProtected<Thread::GlobalList>> s_list;
|
|
|
|
SpinlockProtected<Thread::GlobalList>& Thread::all_instances()
|
|
{
|
|
return *s_list;
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<Thread>> Thread::try_create(NonnullRefPtr<Process> process)
|
|
{
|
|
auto kernel_stack_region = TRY(MM.allocate_kernel_region(default_kernel_stack_size, {}, Memory::Region::Access::ReadWrite, AllocationStrategy::AllocateNow));
|
|
kernel_stack_region->set_stack(true);
|
|
|
|
auto block_timer = try_make_ref_counted<Timer>();
|
|
if (!block_timer)
|
|
return ENOMEM;
|
|
|
|
auto name = TRY(KString::try_create(process->name()));
|
|
return adopt_nonnull_ref_or_enomem(new (nothrow) Thread(move(process), move(kernel_stack_region), block_timer.release_nonnull(), move(name)));
|
|
}
|
|
|
|
Thread::Thread(NonnullRefPtr<Process> process, NonnullOwnPtr<Memory::Region> kernel_stack_region, NonnullRefPtr<Timer> block_timer, NonnullOwnPtr<KString> name)
|
|
: m_process(move(process))
|
|
, m_kernel_stack_region(move(kernel_stack_region))
|
|
, m_name(move(name))
|
|
, m_block_timer(move(block_timer))
|
|
{
|
|
bool is_first_thread = m_process->add_thread(*this);
|
|
if (is_first_thread) {
|
|
// First thread gets TID == PID
|
|
m_tid = m_process->pid().value();
|
|
} else {
|
|
m_tid = Process::allocate_pid().value();
|
|
}
|
|
|
|
// FIXME: Handle KString allocation failure.
|
|
m_kernel_stack_region->set_name(MUST(KString::formatted("Kernel stack (thread {})", m_tid.value())));
|
|
|
|
Thread::all_instances().with([&](auto& list) {
|
|
list.append(*this);
|
|
});
|
|
|
|
if constexpr (THREAD_DEBUG)
|
|
dbgln("Created new thread {}({}:{})", m_process->name(), m_process->pid().value(), m_tid.value());
|
|
|
|
reset_fpu_state();
|
|
|
|
// Only IF is set when a process boots.
|
|
m_regs.set_flags(0x0202);
|
|
|
|
#if ARCH(I386)
|
|
if (m_process->is_kernel_process()) {
|
|
m_regs.cs = GDT_SELECTOR_CODE0;
|
|
m_regs.ds = GDT_SELECTOR_DATA0;
|
|
m_regs.es = GDT_SELECTOR_DATA0;
|
|
m_regs.fs = 0;
|
|
m_regs.ss = GDT_SELECTOR_DATA0;
|
|
m_regs.gs = GDT_SELECTOR_PROC;
|
|
} else {
|
|
m_regs.cs = GDT_SELECTOR_CODE3 | 3;
|
|
m_regs.ds = GDT_SELECTOR_DATA3 | 3;
|
|
m_regs.es = GDT_SELECTOR_DATA3 | 3;
|
|
m_regs.fs = GDT_SELECTOR_DATA3 | 3;
|
|
m_regs.ss = GDT_SELECTOR_DATA3 | 3;
|
|
m_regs.gs = GDT_SELECTOR_TLS | 3;
|
|
}
|
|
#else
|
|
if (m_process->is_kernel_process())
|
|
m_regs.cs = GDT_SELECTOR_CODE0;
|
|
else
|
|
m_regs.cs = GDT_SELECTOR_CODE3 | 3;
|
|
#endif
|
|
|
|
m_regs.cr3 = m_process->address_space().page_directory().cr3();
|
|
|
|
m_kernel_stack_base = m_kernel_stack_region->vaddr().get();
|
|
m_kernel_stack_top = m_kernel_stack_region->vaddr().offset(default_kernel_stack_size).get() & ~(FlatPtr)0x7u;
|
|
|
|
if (m_process->is_kernel_process()) {
|
|
m_regs.set_sp(m_kernel_stack_top);
|
|
m_regs.set_sp0(m_kernel_stack_top);
|
|
} else {
|
|
// Ring 3 processes get a separate stack for ring 0.
|
|
// The ring 3 stack will be assigned by exec().
|
|
#if ARCH(I386)
|
|
m_regs.ss0 = GDT_SELECTOR_DATA0;
|
|
#endif
|
|
m_regs.set_sp0(m_kernel_stack_top);
|
|
}
|
|
|
|
// We need to add another reference if we could successfully create
|
|
// all the resources needed for this thread. The reason for this is that
|
|
// we don't want to delete this thread after dropping the reference,
|
|
// it may still be running or scheduled to be run.
|
|
// The finalizer is responsible for dropping this reference once this
|
|
// thread is ready to be cleaned up.
|
|
ref();
|
|
}
|
|
|
|
Thread::~Thread()
|
|
{
|
|
{
|
|
// We need to explicitly remove ourselves from the thread list
|
|
// here. We may get preempted in the middle of destructing this
|
|
// thread, which causes problems if the thread list is iterated.
|
|
// Specifically, if this is the last thread of a process, checking
|
|
// block conditions would access m_process, which would be in
|
|
// the middle of being destroyed.
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
VERIFY(!m_process_thread_list_node.is_in_list());
|
|
|
|
// We shouldn't be queued
|
|
VERIFY(m_runnable_priority < 0);
|
|
}
|
|
}
|
|
|
|
void Thread::block(Kernel::Mutex& lock, SpinlockLocker<Spinlock>& lock_lock, u32 lock_count)
|
|
{
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(this == Thread::current());
|
|
ScopedCritical critical;
|
|
VERIFY(!Memory::s_mm_lock.is_locked_by_current_processor());
|
|
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
|
|
switch (state()) {
|
|
case Thread::Stopped:
|
|
// It's possible that we were requested to be stopped!
|
|
break;
|
|
case Thread::Running:
|
|
VERIFY(m_blocker == nullptr);
|
|
break;
|
|
default:
|
|
dbgln("Error: Attempting to block with invalid thread state - {}", state_string());
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
// If we're blocking on the big-lock we may actually be in the process
|
|
// of unblocking from another lock. If that's the case m_blocking_lock
|
|
// is already set
|
|
auto& big_lock = process().big_lock();
|
|
VERIFY((&lock == &big_lock && m_blocking_lock != &big_lock) || !m_blocking_lock);
|
|
|
|
auto* previous_blocking_lock = m_blocking_lock;
|
|
m_blocking_lock = &lock;
|
|
m_lock_requested_count = lock_count;
|
|
|
|
set_state(Thread::Blocked);
|
|
|
|
scheduler_lock.unlock();
|
|
block_lock.unlock();
|
|
|
|
lock_lock.unlock();
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} blocking on Mutex {}", *this, &lock);
|
|
|
|
for (;;) {
|
|
// Yield to the scheduler, and wait for us to resume unblocked.
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(Processor::in_critical());
|
|
if (&lock != &big_lock && big_lock.is_locked_by_current_thread()) {
|
|
// We're locking another lock and already hold the big lock...
|
|
// We need to release the big lock
|
|
yield_and_release_relock_big_lock();
|
|
} else {
|
|
// By the time we've reached this another thread might have
|
|
// marked us as holding the big lock, so this call must not
|
|
// verify that we're not holding it.
|
|
yield_without_releasing_big_lock(VerifyLockNotHeld::No);
|
|
}
|
|
VERIFY(Processor::in_critical());
|
|
|
|
SpinlockLocker block_lock2(m_block_lock);
|
|
VERIFY(!m_blocking_lock);
|
|
m_blocking_lock = previous_blocking_lock;
|
|
break;
|
|
}
|
|
|
|
lock_lock.lock();
|
|
}
|
|
|
|
u32 Thread::unblock_from_lock(Kernel::Mutex& lock)
|
|
{
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
VERIFY(m_blocking_lock == &lock);
|
|
auto requested_count = m_lock_requested_count;
|
|
block_lock.unlock();
|
|
|
|
auto do_unblock = [&]() {
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
VERIFY(m_blocking_lock == &lock);
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(m_block_lock.is_locked_by_current_processor());
|
|
VERIFY(m_blocking_lock == &lock);
|
|
dbgln_if(THREAD_DEBUG, "Thread {} unblocked from Mutex {}", *this, &lock);
|
|
m_blocking_lock = nullptr;
|
|
if (Thread::current() == this) {
|
|
set_state(Thread::Running);
|
|
return;
|
|
}
|
|
VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
|
|
set_state(Thread::Runnable);
|
|
};
|
|
if (Processor::current_in_irq() != 0) {
|
|
Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
|
|
if (auto this_thread = self.strong_ref())
|
|
do_unblock();
|
|
});
|
|
} else {
|
|
do_unblock();
|
|
}
|
|
return requested_count;
|
|
}
|
|
|
|
void Thread::unblock_from_blocker(Blocker& blocker)
|
|
{
|
|
auto do_unblock = [&]() {
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker != &blocker)
|
|
return;
|
|
if (!should_be_stopped() && !is_stopped())
|
|
unblock();
|
|
};
|
|
if (Processor::current_in_irq() != 0) {
|
|
Processor::deferred_call_queue([do_unblock = move(do_unblock), self = make_weak_ptr()]() {
|
|
if (auto this_thread = self.strong_ref())
|
|
do_unblock();
|
|
});
|
|
} else {
|
|
do_unblock();
|
|
}
|
|
}
|
|
|
|
void Thread::unblock(u8 signal)
|
|
{
|
|
VERIFY(!Processor::current_in_irq());
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(m_block_lock.is_locked_by_current_processor());
|
|
if (m_state != Thread::Blocked)
|
|
return;
|
|
if (m_blocking_lock)
|
|
return;
|
|
VERIFY(m_blocker);
|
|
if (signal != 0) {
|
|
if (is_handling_page_fault()) {
|
|
// Don't let signals unblock threads that are blocked inside a page fault handler.
|
|
// This prevents threads from EINTR'ing the inode read in an inode page fault.
|
|
// FIXME: There's probably a better way to solve this.
|
|
return;
|
|
}
|
|
if (!m_blocker->can_be_interrupted() && !m_should_die)
|
|
return;
|
|
m_blocker->set_interrupted_by_signal(signal);
|
|
}
|
|
m_blocker = nullptr;
|
|
if (Thread::current() == this) {
|
|
set_state(Thread::Running);
|
|
return;
|
|
}
|
|
VERIFY(m_state != Thread::Runnable && m_state != Thread::Running);
|
|
set_state(Thread::Runnable);
|
|
}
|
|
|
|
void Thread::set_should_die()
|
|
{
|
|
if (m_should_die) {
|
|
dbgln("{} Should already die", *this);
|
|
return;
|
|
}
|
|
ScopedCritical critical;
|
|
|
|
// Remember that we should die instead of returning to
|
|
// the userspace.
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
m_should_die = true;
|
|
|
|
// NOTE: Even the current thread can technically be in "Stopped"
|
|
// state! This is the case when another thread sent a SIGSTOP to
|
|
// it while it was running and it calls e.g. exit() before
|
|
// the scheduler gets involved again.
|
|
if (is_stopped()) {
|
|
// If we were stopped, we need to briefly resume so that
|
|
// the kernel stacks can clean up. We won't ever return back
|
|
// to user mode, though
|
|
VERIFY(!process().is_stopped());
|
|
resume_from_stopped();
|
|
}
|
|
if (is_blocked()) {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker) {
|
|
// We're blocked in the kernel.
|
|
m_blocker->set_interrupted_by_death();
|
|
unblock();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::die_if_needed()
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
|
|
if (!m_should_die)
|
|
return;
|
|
|
|
u32 unlock_count;
|
|
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
|
|
|
|
dbgln_if(THREAD_DEBUG, "Thread {} is dying", *this);
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
// It's possible that we don't reach the code after this block if the
|
|
// scheduler is invoked and FinalizerTask cleans up this thread, however
|
|
// that doesn't matter because we're trying to invoke the scheduler anyway
|
|
set_state(Thread::Dying);
|
|
}
|
|
|
|
ScopedCritical critical;
|
|
|
|
// Flag a context switch. Because we're in a critical section,
|
|
// Scheduler::yield will actually only mark a pending context switch
|
|
// Simply leaving the critical section would not necessarily trigger
|
|
// a switch.
|
|
Scheduler::yield();
|
|
|
|
// Now leave the critical section so that we can also trigger the
|
|
// actual context switch
|
|
Processor::clear_critical();
|
|
dbgln("die_if_needed returned from clear_critical!!! in irq: {}", Processor::current_in_irq());
|
|
// We should never get here, but the scoped scheduler lock
|
|
// will be released by Scheduler::context_switch again
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
void Thread::exit(void* exit_value)
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
m_join_blocker_set.thread_did_exit(exit_value);
|
|
set_should_die();
|
|
u32 unlock_count;
|
|
[[maybe_unused]] auto rc = unlock_process_if_locked(unlock_count);
|
|
if (m_thread_specific_range.has_value()) {
|
|
auto* region = process().address_space().find_region_from_range(m_thread_specific_range.value());
|
|
process().address_space().deallocate_region(*region);
|
|
}
|
|
#ifdef ENABLE_KERNEL_COVERAGE_COLLECTION
|
|
KCOVDevice::free_thread();
|
|
#endif
|
|
die_if_needed();
|
|
}
|
|
|
|
void Thread::yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held)
|
|
{
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(verify_lock_not_held == VerifyLockNotHeld::No || !process().big_lock().is_locked_by_current_thread());
|
|
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
|
|
InterruptDisabler disable;
|
|
Scheduler::yield(); // flag a switch
|
|
u32 prev_critical = Processor::clear_critical();
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::restore_critical(prev_critical);
|
|
}
|
|
|
|
void Thread::yield_and_release_relock_big_lock()
|
|
{
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
// Disable interrupts here. This ensures we don't accidentally switch contexts twice
|
|
InterruptDisabler disable;
|
|
Scheduler::yield(); // flag a switch
|
|
u32 lock_count_to_restore = 0;
|
|
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
|
|
// NOTE: Even though we call Scheduler::yield here, unless we happen
|
|
// to be outside of a critical section, the yield will be postponed
|
|
// until leaving it in relock_process.
|
|
relock_process(previous_locked, lock_count_to_restore);
|
|
}
|
|
|
|
LockMode Thread::unlock_process_if_locked(u32& lock_count_to_restore)
|
|
{
|
|
return process().big_lock().force_unlock_if_locked(lock_count_to_restore);
|
|
}
|
|
|
|
void Thread::relock_process(LockMode previous_locked, u32 lock_count_to_restore)
|
|
{
|
|
// Clearing the critical section may trigger the context switch
|
|
// flagged by calling Scheduler::yield above.
|
|
// We have to do it this way because we intentionally
|
|
// leave the critical section here to be able to switch contexts.
|
|
u32 prev_critical = Processor::clear_critical();
|
|
|
|
// CONTEXT SWITCH HAPPENS HERE!
|
|
|
|
// NOTE: We may be on a different CPU now!
|
|
Processor::restore_critical(prev_critical);
|
|
|
|
if (previous_locked != LockMode::Unlocked) {
|
|
// We've unblocked, relock the process if needed and carry on.
|
|
process().big_lock().restore_lock(previous_locked, lock_count_to_restore);
|
|
}
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
|
|
auto Thread::sleep(clockid_t clock_id, const Time& duration, Time* remaining_time) -> BlockResult
|
|
{
|
|
VERIFY(state() == Thread::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(false, &duration, nullptr, clock_id), remaining_time);
|
|
}
|
|
|
|
// NOLINTNEXTLINE(readability-make-member-function-const) False positive; We call block<SleepBlocker> which is not const
|
|
auto Thread::sleep_until(clockid_t clock_id, const Time& deadline) -> BlockResult
|
|
{
|
|
VERIFY(state() == Thread::Running);
|
|
return Thread::current()->block<Thread::SleepBlocker>({}, Thread::BlockTimeout(true, &deadline, nullptr, clock_id));
|
|
}
|
|
|
|
StringView Thread::state_string() const
|
|
{
|
|
switch (state()) {
|
|
case Thread::Invalid:
|
|
return "Invalid"sv;
|
|
case Thread::Runnable:
|
|
return "Runnable"sv;
|
|
case Thread::Running:
|
|
return "Running"sv;
|
|
case Thread::Dying:
|
|
return "Dying"sv;
|
|
case Thread::Dead:
|
|
return "Dead"sv;
|
|
case Thread::Stopped:
|
|
return "Stopped"sv;
|
|
case Thread::Blocked: {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocking_lock)
|
|
return "Mutex"sv;
|
|
if (m_blocker)
|
|
return m_blocker->state_string();
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
PANIC("Thread::state_string(): Invalid state: {}", (int)state());
|
|
}
|
|
|
|
void Thread::finalize()
|
|
{
|
|
VERIFY(Thread::current() == g_finalizer);
|
|
VERIFY(Thread::current() != this);
|
|
|
|
#if LOCK_DEBUG
|
|
VERIFY(!m_lock.is_locked_by_current_processor());
|
|
if (lock_count() > 0) {
|
|
dbgln("Thread {} leaking {} Locks!", *this, lock_count());
|
|
SpinlockLocker list_lock(m_holding_locks_lock);
|
|
for (auto& info : m_holding_locks_list) {
|
|
const auto& location = info.lock_location;
|
|
dbgln(" - Mutex: \"{}\" @ {} locked in function \"{}\" at \"{}:{}\" with a count of: {}", info.lock->name(), info.lock, location.function_name(), location.filename(), location.line_number(), info.count);
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
#endif
|
|
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
dbgln_if(THREAD_DEBUG, "Finalizing thread {}", *this);
|
|
set_state(Thread::State::Dead);
|
|
m_join_blocker_set.thread_finalizing();
|
|
}
|
|
|
|
if (m_dump_backtrace_on_finalization) {
|
|
auto trace_or_error = backtrace();
|
|
if (!trace_or_error.is_error()) {
|
|
auto trace = trace_or_error.release_value();
|
|
dbgln("Backtrace:");
|
|
kernelputstr(trace->characters(), trace->length());
|
|
}
|
|
}
|
|
|
|
drop_thread_count();
|
|
}
|
|
|
|
void Thread::drop_thread_count()
|
|
{
|
|
bool is_last = process().remove_thread(*this);
|
|
if (is_last)
|
|
process().finalize();
|
|
}
|
|
|
|
void Thread::finalize_dying_threads()
|
|
{
|
|
VERIFY(Thread::current() == g_finalizer);
|
|
Vector<Thread*, 32> dying_threads;
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
for_each_in_state(Thread::State::Dying, [&](Thread& thread) {
|
|
if (!thread.is_finalizable())
|
|
return;
|
|
auto result = dying_threads.try_append(&thread);
|
|
// We ignore allocation failures above the first 32 guaranteed thread slots, and
|
|
// just flag our future-selves to finalize these threads at a later point
|
|
if (result.is_error())
|
|
g_finalizer_has_work.store(true, AK::MemoryOrder::memory_order_release);
|
|
});
|
|
}
|
|
for (auto* thread : dying_threads) {
|
|
RefPtr<Process> process = thread->process();
|
|
dbgln_if(PROCESS_DEBUG, "Before finalization, {} has {} refs and its process has {}",
|
|
*thread, thread->ref_count(), thread->process().ref_count());
|
|
thread->finalize();
|
|
dbgln_if(PROCESS_DEBUG, "After finalization, {} has {} refs and its process has {}",
|
|
*thread, thread->ref_count(), thread->process().ref_count());
|
|
// This thread will never execute again, drop the running reference
|
|
// NOTE: This may not necessarily drop the last reference if anything
|
|
// else is still holding onto this thread!
|
|
thread->unref();
|
|
}
|
|
}
|
|
|
|
void Thread::update_time_scheduled(u64 current_scheduler_time, bool is_kernel, bool no_longer_running)
|
|
{
|
|
if (m_last_time_scheduled.has_value()) {
|
|
u64 delta;
|
|
if (current_scheduler_time >= m_last_time_scheduled.value())
|
|
delta = current_scheduler_time - m_last_time_scheduled.value();
|
|
else
|
|
delta = m_last_time_scheduled.value() - current_scheduler_time; // the unlikely event that the clock wrapped
|
|
if (delta != 0) {
|
|
// Add it to the global total *before* updating the thread's value!
|
|
Scheduler::add_time_scheduled(delta, is_kernel);
|
|
|
|
auto& total_time = is_kernel ? m_total_time_scheduled_kernel : m_total_time_scheduled_user;
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
total_time += delta;
|
|
}
|
|
}
|
|
if (no_longer_running)
|
|
m_last_time_scheduled = {};
|
|
else
|
|
m_last_time_scheduled = current_scheduler_time;
|
|
}
|
|
|
|
bool Thread::tick()
|
|
{
|
|
if (previous_mode() == PreviousMode::KernelMode) {
|
|
++m_process->m_ticks_in_kernel;
|
|
++m_ticks_in_kernel;
|
|
} else {
|
|
++m_process->m_ticks_in_user;
|
|
++m_ticks_in_user;
|
|
}
|
|
--m_ticks_left;
|
|
return m_ticks_left != 0;
|
|
}
|
|
|
|
void Thread::check_dispatch_pending_signal()
|
|
{
|
|
auto result = DispatchSignalResult::Continue;
|
|
{
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
if (pending_signals_for_state() != 0) {
|
|
SpinlockLocker lock(m_lock);
|
|
result = dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
if (result == DispatchSignalResult::Yield) {
|
|
yield_without_releasing_big_lock();
|
|
}
|
|
}
|
|
|
|
u32 Thread::pending_signals() const
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
return pending_signals_for_state();
|
|
}
|
|
|
|
u32 Thread::pending_signals_for_state() const
|
|
{
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
constexpr u32 stopped_signal_mask = (1 << (SIGCONT - 1)) | (1 << (SIGKILL - 1)) | (1 << (SIGTRAP - 1));
|
|
if (is_handling_page_fault())
|
|
return 0;
|
|
return m_state != Stopped ? m_pending_signals : m_pending_signals & stopped_signal_mask;
|
|
}
|
|
|
|
void Thread::send_signal(u8 signal, [[maybe_unused]] Process* sender)
|
|
{
|
|
VERIFY(signal < 32);
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
|
|
// FIXME: Figure out what to do for masked signals. Should we also ignore them here?
|
|
if (should_ignore_signal(signal)) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal {} was ignored by {}", signal, process());
|
|
return;
|
|
}
|
|
|
|
if constexpr (SIGNAL_DEBUG) {
|
|
if (sender)
|
|
dbgln("Signal: {} sent {} to {}", *sender, signal, process());
|
|
else
|
|
dbgln("Signal: Kernel send {} to {}", signal, process());
|
|
}
|
|
|
|
m_pending_signals |= 1 << (signal - 1);
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
m_signal_blocker_set.unblock_all_blockers_whose_conditions_are_met();
|
|
|
|
if (!has_unmasked_pending_signals())
|
|
return;
|
|
|
|
if (m_state == Stopped) {
|
|
SpinlockLocker lock(m_lock);
|
|
if (pending_signals_for_state() != 0) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal: Resuming stopped {} to deliver signal {}", *this, signal);
|
|
resume_from_stopped();
|
|
}
|
|
} else {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
dbgln_if(SIGNAL_DEBUG, "Signal: Unblocking {} to deliver signal {}", *this, signal);
|
|
unblock(signal);
|
|
}
|
|
}
|
|
|
|
u32 Thread::update_signal_mask(u32 signal_mask)
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
m_signal_mask = signal_mask;
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask() const
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
return m_signal_mask;
|
|
}
|
|
|
|
u32 Thread::signal_mask_block(sigset_t signal_set, bool block)
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
auto previous_signal_mask = m_signal_mask;
|
|
if (block)
|
|
m_signal_mask |= signal_set;
|
|
else
|
|
m_signal_mask &= ~signal_set;
|
|
m_have_any_unmasked_pending_signals.store((pending_signals_for_state() & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
return previous_signal_mask;
|
|
}
|
|
|
|
void Thread::reset_signals_for_exec()
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
// The signal mask is preserved across execve(2).
|
|
// The pending signal set is preserved across an execve(2).
|
|
m_have_any_unmasked_pending_signals.store(false, AK::memory_order_release);
|
|
m_signal_action_data.fill({});
|
|
// A successful call to execve(2) removes any existing alternate signal stack
|
|
m_alternative_signal_stack = 0;
|
|
m_alternative_signal_stack_size = 0;
|
|
}
|
|
|
|
// Certain exceptions, such as SIGSEGV and SIGILL, put a
|
|
// thread into a state where the signal handler must be
|
|
// invoked immediately, otherwise it will continue to fault.
|
|
// This function should be used in an exception handler to
|
|
// ensure that when the thread resumes, it's executing in
|
|
// the appropriate signal handler.
|
|
void Thread::send_urgent_signal_to_self(u8 signal)
|
|
{
|
|
VERIFY(Thread::current() == this);
|
|
DispatchSignalResult result;
|
|
{
|
|
SpinlockLocker lock(g_scheduler_lock);
|
|
result = dispatch_signal(signal);
|
|
}
|
|
if (result == DispatchSignalResult::Terminate) {
|
|
Thread::current()->die_if_needed();
|
|
VERIFY_NOT_REACHED(); // dispatch_signal will request termination of the thread, so the above call should never return
|
|
}
|
|
if (result == DispatchSignalResult::Yield)
|
|
yield_and_release_relock_big_lock();
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_one_pending_signal()
|
|
{
|
|
VERIFY(m_lock.is_locked_by_current_processor());
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if (signal_candidates == 0)
|
|
return DispatchSignalResult::Continue;
|
|
|
|
u8 signal = 1;
|
|
for (; signal < 32; ++signal) {
|
|
if ((signal_candidates & (1 << (signal - 1))) != 0) {
|
|
break;
|
|
}
|
|
}
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
DispatchSignalResult Thread::try_dispatch_one_pending_signal(u8 signal)
|
|
{
|
|
VERIFY(signal != 0);
|
|
SpinlockLocker scheduler_lock(g_scheduler_lock);
|
|
SpinlockLocker lock(m_lock);
|
|
u32 signal_candidates = pending_signals_for_state() & ~m_signal_mask;
|
|
if ((signal_candidates & (1 << (signal - 1))) == 0)
|
|
return DispatchSignalResult::Continue;
|
|
return dispatch_signal(signal);
|
|
}
|
|
|
|
enum class DefaultSignalAction {
|
|
Terminate,
|
|
Ignore,
|
|
DumpCore,
|
|
Stop,
|
|
Continue,
|
|
};
|
|
|
|
static DefaultSignalAction default_signal_action(u8 signal)
|
|
{
|
|
VERIFY(signal && signal < NSIG);
|
|
|
|
switch (signal) {
|
|
case SIGHUP:
|
|
case SIGINT:
|
|
case SIGKILL:
|
|
case SIGPIPE:
|
|
case SIGALRM:
|
|
case SIGUSR1:
|
|
case SIGUSR2:
|
|
case SIGVTALRM:
|
|
case SIGSTKFLT:
|
|
case SIGIO:
|
|
case SIGPROF:
|
|
case SIGTERM:
|
|
return DefaultSignalAction::Terminate;
|
|
case SIGCHLD:
|
|
case SIGURG:
|
|
case SIGWINCH:
|
|
case SIGINFO:
|
|
return DefaultSignalAction::Ignore;
|
|
case SIGQUIT:
|
|
case SIGILL:
|
|
case SIGTRAP:
|
|
case SIGABRT:
|
|
case SIGBUS:
|
|
case SIGFPE:
|
|
case SIGSEGV:
|
|
case SIGXCPU:
|
|
case SIGXFSZ:
|
|
case SIGSYS:
|
|
return DefaultSignalAction::DumpCore;
|
|
case SIGCONT:
|
|
return DefaultSignalAction::Continue;
|
|
case SIGSTOP:
|
|
case SIGTSTP:
|
|
case SIGTTIN:
|
|
case SIGTTOU:
|
|
return DefaultSignalAction::Stop;
|
|
default:
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
}
|
|
|
|
bool Thread::should_ignore_signal(u8 signal) const
|
|
{
|
|
VERIFY(signal < 32);
|
|
auto const& action = m_signal_action_data[signal];
|
|
if (action.handler_or_sigaction.is_null())
|
|
return default_signal_action(signal) == DefaultSignalAction::Ignore;
|
|
return ((sighandler_t)action.handler_or_sigaction.get() == SIG_IGN);
|
|
}
|
|
|
|
bool Thread::has_signal_handler(u8 signal) const
|
|
{
|
|
VERIFY(signal < 32);
|
|
auto const& action = m_signal_action_data[signal];
|
|
return !action.handler_or_sigaction.is_null();
|
|
}
|
|
|
|
bool Thread::is_signal_masked(u8 signal) const
|
|
{
|
|
VERIFY(signal < 32);
|
|
return (1 << (signal - 1)) & m_signal_mask;
|
|
}
|
|
|
|
bool Thread::has_alternative_signal_stack() const
|
|
{
|
|
return m_alternative_signal_stack_size != 0;
|
|
}
|
|
|
|
bool Thread::is_in_alternative_signal_stack() const
|
|
{
|
|
auto sp = get_register_dump_from_stack().userspace_sp();
|
|
return sp >= m_alternative_signal_stack && sp < m_alternative_signal_stack + m_alternative_signal_stack_size;
|
|
}
|
|
|
|
static ErrorOr<void> push_value_on_user_stack(FlatPtr& stack, FlatPtr data)
|
|
{
|
|
stack -= sizeof(FlatPtr);
|
|
return copy_to_user((FlatPtr*)stack, &data);
|
|
}
|
|
|
|
void Thread::resume_from_stopped()
|
|
{
|
|
VERIFY(is_stopped());
|
|
VERIFY(m_stop_state != State::Invalid);
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
if (m_stop_state == Blocked) {
|
|
SpinlockLocker block_lock(m_block_lock);
|
|
if (m_blocker || m_blocking_lock) {
|
|
// Hasn't been unblocked yet
|
|
set_state(Blocked, 0);
|
|
} else {
|
|
// Was unblocked while stopped
|
|
set_state(Runnable);
|
|
}
|
|
} else {
|
|
set_state(m_stop_state, 0);
|
|
}
|
|
}
|
|
|
|
DispatchSignalResult Thread::dispatch_signal(u8 signal)
|
|
{
|
|
VERIFY_INTERRUPTS_DISABLED();
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
VERIFY(signal > 0 && signal <= 32);
|
|
VERIFY(process().is_user_process());
|
|
VERIFY(this == Thread::current());
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Dispatch signal {} to {}, state: {}", signal, *this, state_string());
|
|
|
|
if (m_state == Invalid || !is_initialized()) {
|
|
// Thread has barely been created, we need to wait until it is
|
|
// at least in Runnable state and is_initialized() returns true,
|
|
// which indicates that it is fully set up an we actually have
|
|
// a register state on the stack that we can modify
|
|
return DispatchSignalResult::Deferred;
|
|
}
|
|
|
|
VERIFY(previous_mode() == PreviousMode::UserMode);
|
|
|
|
auto& action = m_signal_action_data[signal];
|
|
// FIXME: Implement SA_SIGINFO signal handlers.
|
|
VERIFY(!(action.flags & SA_SIGINFO));
|
|
|
|
// Mark this signal as handled.
|
|
m_pending_signals &= ~(1 << (signal - 1));
|
|
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
|
|
auto& process = this->process();
|
|
auto* tracer = process.tracer();
|
|
if (signal == SIGSTOP || (tracer && default_signal_action(signal) == DefaultSignalAction::DumpCore)) {
|
|
dbgln_if(SIGNAL_DEBUG, "Signal {} stopping this thread", signal);
|
|
set_state(State::Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
|
|
if (signal == SIGCONT) {
|
|
dbgln("signal: SIGCONT resuming {}", *this);
|
|
} else {
|
|
if (tracer) {
|
|
// when a thread is traced, it should be stopped whenever it receives a signal
|
|
// the tracer is notified of this by using waitpid()
|
|
// only "pending signals" from the tracer are sent to the tracee
|
|
if (!tracer->has_pending_signal(signal)) {
|
|
dbgln("signal: {} stopping {} for tracer", signal, *this);
|
|
set_state(Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
}
|
|
tracer->unset_signal(signal);
|
|
}
|
|
}
|
|
|
|
auto handler_vaddr = action.handler_or_sigaction;
|
|
if (handler_vaddr.is_null()) {
|
|
switch (default_signal_action(signal)) {
|
|
case DefaultSignalAction::Stop:
|
|
set_state(Stopped, signal);
|
|
return DispatchSignalResult::Yield;
|
|
case DefaultSignalAction::DumpCore:
|
|
process.set_should_generate_coredump(true);
|
|
process.for_each_thread([](auto& thread) {
|
|
thread.set_dump_backtrace_on_finalization();
|
|
});
|
|
[[fallthrough]];
|
|
case DefaultSignalAction::Terminate:
|
|
m_process->terminate_due_to_signal(signal);
|
|
return DispatchSignalResult::Terminate;
|
|
case DefaultSignalAction::Ignore:
|
|
VERIFY_NOT_REACHED();
|
|
case DefaultSignalAction::Continue:
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
if ((sighandler_t)handler_vaddr.as_ptr() == SIG_IGN) {
|
|
dbgln_if(SIGNAL_DEBUG, "Ignored signal {}", signal);
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
VERIFY(previous_mode() == PreviousMode::UserMode);
|
|
VERIFY(current_trap());
|
|
|
|
ScopedAddressSpaceSwitcher switcher(m_process);
|
|
|
|
u32 old_signal_mask = m_signal_mask;
|
|
u32 new_signal_mask = action.mask;
|
|
if ((action.flags & SA_NODEFER) == SA_NODEFER)
|
|
new_signal_mask &= ~(1 << (signal - 1));
|
|
else
|
|
new_signal_mask |= 1 << (signal - 1);
|
|
|
|
m_signal_mask |= new_signal_mask;
|
|
m_have_any_unmasked_pending_signals.store((m_pending_signals & ~m_signal_mask) != 0, AK::memory_order_release);
|
|
|
|
bool use_alternative_stack = ((action.flags & SA_ONSTACK) != 0) && has_alternative_signal_stack() && !is_in_alternative_signal_stack();
|
|
|
|
auto setup_stack = [&](RegisterState& state) -> ErrorOr<void> {
|
|
FlatPtr old_sp = state.userspace_sp();
|
|
FlatPtr stack;
|
|
if (use_alternative_stack)
|
|
stack = m_alternative_signal_stack + m_alternative_signal_stack_size;
|
|
else
|
|
stack = old_sp;
|
|
|
|
FlatPtr ret_ip = state.ip();
|
|
FlatPtr ret_flags = state.flags();
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Setting up user stack to return to IP {:p}, SP {:p}", ret_ip, old_sp);
|
|
|
|
#if ARCH(I386)
|
|
// Align the stack to 16 bytes.
|
|
// Note that we push 52 bytes (4 * 13) on to the stack
|
|
// before the return address, so we need to account for this here.
|
|
// 56 % 16 = 4, so we only need to take 4 bytes into consideration for
|
|
// the stack alignment.
|
|
FlatPtr stack_alignment = (stack - 4) % 16;
|
|
stack -= stack_alignment;
|
|
|
|
TRY(push_value_on_user_stack(stack, ret_flags));
|
|
|
|
TRY(push_value_on_user_stack(stack, ret_ip));
|
|
TRY(push_value_on_user_stack(stack, state.eax));
|
|
TRY(push_value_on_user_stack(stack, state.ecx));
|
|
TRY(push_value_on_user_stack(stack, state.edx));
|
|
TRY(push_value_on_user_stack(stack, state.ebx));
|
|
TRY(push_value_on_user_stack(stack, old_sp));
|
|
TRY(push_value_on_user_stack(stack, state.ebp));
|
|
TRY(push_value_on_user_stack(stack, state.esi));
|
|
TRY(push_value_on_user_stack(stack, state.edi));
|
|
#else
|
|
// Align the stack to 16 bytes.
|
|
// Note that we push 168 bytes (8 * 21) on to the stack
|
|
// before the return address, so we need to account for this here.
|
|
// 168 % 16 = 8, so we only need to take 8 bytes into consideration for
|
|
// the stack alignment.
|
|
// We also are not allowed to touch the thread's red-zone of 128 bytes
|
|
FlatPtr stack_alignment = (stack - 8) % 16;
|
|
stack -= 128 + stack_alignment;
|
|
|
|
TRY(push_value_on_user_stack(stack, ret_flags));
|
|
|
|
TRY(push_value_on_user_stack(stack, ret_ip));
|
|
TRY(push_value_on_user_stack(stack, state.r15));
|
|
TRY(push_value_on_user_stack(stack, state.r14));
|
|
TRY(push_value_on_user_stack(stack, state.r13));
|
|
TRY(push_value_on_user_stack(stack, state.r12));
|
|
TRY(push_value_on_user_stack(stack, state.r11));
|
|
TRY(push_value_on_user_stack(stack, state.r10));
|
|
TRY(push_value_on_user_stack(stack, state.r9));
|
|
TRY(push_value_on_user_stack(stack, state.r8));
|
|
TRY(push_value_on_user_stack(stack, state.rax));
|
|
TRY(push_value_on_user_stack(stack, state.rcx));
|
|
TRY(push_value_on_user_stack(stack, state.rdx));
|
|
TRY(push_value_on_user_stack(stack, state.rbx));
|
|
TRY(push_value_on_user_stack(stack, old_sp));
|
|
TRY(push_value_on_user_stack(stack, state.rbp));
|
|
TRY(push_value_on_user_stack(stack, state.rsi));
|
|
TRY(push_value_on_user_stack(stack, state.rdi));
|
|
#endif
|
|
|
|
// PUSH old_signal_mask
|
|
TRY(push_value_on_user_stack(stack, old_signal_mask));
|
|
|
|
TRY(push_value_on_user_stack(stack, signal));
|
|
TRY(push_value_on_user_stack(stack, handler_vaddr.get()));
|
|
|
|
VERIFY((stack % 16) == 0);
|
|
|
|
TRY(push_value_on_user_stack(stack, 0)); // push fake return address
|
|
|
|
// We write back the adjusted stack value into the register state.
|
|
// We have to do this because we can't just pass around a reference to a packed field, as it's UB.
|
|
state.set_userspace_sp(stack);
|
|
|
|
return {};
|
|
};
|
|
|
|
// We now place the thread state on the userspace stack.
|
|
// Note that we use a RegisterState.
|
|
// Conversely, when the thread isn't blocking the RegisterState may not be
|
|
// valid (fork, exec etc) but the tss will, so we use that instead.
|
|
auto& regs = get_register_dump_from_stack();
|
|
|
|
auto result = setup_stack(regs);
|
|
if (result.is_error()) {
|
|
dbgln("Invalid stack pointer: {}", regs.userspace_sp());
|
|
process.set_should_generate_coredump(true);
|
|
process.for_each_thread([](auto& thread) {
|
|
thread.set_dump_backtrace_on_finalization();
|
|
});
|
|
m_process->terminate_due_to_signal(signal);
|
|
return DispatchSignalResult::Terminate;
|
|
}
|
|
|
|
auto signal_trampoline_addr = process.signal_trampoline().get();
|
|
regs.set_ip(signal_trampoline_addr);
|
|
|
|
dbgln_if(SIGNAL_DEBUG, "Thread in state '{}' has been primed with signal handler {:#04x}:{:p} to deliver {}", state_string(), m_regs.cs, m_regs.ip(), signal);
|
|
|
|
return DispatchSignalResult::Continue;
|
|
}
|
|
|
|
RegisterState& Thread::get_register_dump_from_stack()
|
|
{
|
|
auto* trap = current_trap();
|
|
|
|
// We should *always* have a trap. If we don't we're probably a kernel
|
|
// thread that hasn't been preempted. If we want to support this, we
|
|
// need to capture the registers probably into m_regs and return it
|
|
VERIFY(trap);
|
|
|
|
while (trap) {
|
|
if (!trap->next_trap)
|
|
break;
|
|
trap = trap->next_trap;
|
|
}
|
|
return *trap->regs;
|
|
}
|
|
|
|
ErrorOr<NonnullRefPtr<Thread>> Thread::try_clone(Process& process)
|
|
{
|
|
auto clone = TRY(Thread::try_create(process));
|
|
auto signal_action_data_span = m_signal_action_data.span();
|
|
signal_action_data_span.copy_to(clone->m_signal_action_data.span());
|
|
clone->m_signal_mask = m_signal_mask;
|
|
clone->m_fpu_state = m_fpu_state;
|
|
clone->m_thread_specific_data = m_thread_specific_data;
|
|
return clone;
|
|
}
|
|
|
|
void Thread::set_state(State new_state, u8 stop_signal)
|
|
{
|
|
State previous_state;
|
|
VERIFY(g_scheduler_lock.is_locked_by_current_processor());
|
|
if (new_state == m_state)
|
|
return;
|
|
|
|
{
|
|
SpinlockLocker thread_lock(m_lock);
|
|
previous_state = m_state;
|
|
if (previous_state == Invalid) {
|
|
// If we were *just* created, we may have already pending signals
|
|
if (has_unmasked_pending_signals()) {
|
|
dbgln_if(THREAD_DEBUG, "Dispatch pending signals to new thread {}", *this);
|
|
dispatch_one_pending_signal();
|
|
}
|
|
}
|
|
|
|
m_state = new_state;
|
|
dbgln_if(THREAD_DEBUG, "Set thread {} state to {}", *this, state_string());
|
|
}
|
|
|
|
if (previous_state == Runnable) {
|
|
Scheduler::dequeue_runnable_thread(*this);
|
|
} else if (previous_state == Stopped) {
|
|
m_stop_state = State::Invalid;
|
|
auto& process = this->process();
|
|
if (process.set_stopped(false)) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this)
|
|
return;
|
|
if (!thread.is_stopped())
|
|
return;
|
|
dbgln_if(THREAD_DEBUG, "Resuming peer thread {}", thread);
|
|
thread.resume_from_stopped();
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Continued);
|
|
// Tell the parent process (if any) about this change.
|
|
if (auto parent = Process::from_pid(process.ppid())) {
|
|
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (m_state == Runnable) {
|
|
Scheduler::enqueue_runnable_thread(*this);
|
|
Processor::smp_wake_n_idle_processors(1);
|
|
} else if (m_state == Stopped) {
|
|
// We don't want to restore to Running state, only Runnable!
|
|
m_stop_state = previous_state != Running ? previous_state : Runnable;
|
|
auto& process = this->process();
|
|
if (!process.set_stopped(true)) {
|
|
process.for_each_thread([&](auto& thread) {
|
|
if (&thread == this)
|
|
return;
|
|
if (thread.is_stopped())
|
|
return;
|
|
dbgln_if(THREAD_DEBUG, "Stopping peer thread {}", thread);
|
|
thread.set_state(Stopped, stop_signal);
|
|
});
|
|
process.unblock_waiters(Thread::WaitBlocker::UnblockFlags::Stopped, stop_signal);
|
|
// Tell the parent process (if any) about this change.
|
|
if (auto parent = Process::from_pid(process.ppid())) {
|
|
[[maybe_unused]] auto result = parent->send_signal(SIGCHLD, &process);
|
|
}
|
|
}
|
|
} else if (m_state == Dying) {
|
|
VERIFY(previous_state != Blocked);
|
|
if (this != Thread::current() && is_finalizable()) {
|
|
// Some other thread set this thread to Dying, notify the
|
|
// finalizer right away as it can be cleaned up now
|
|
Scheduler::notify_finalizer();
|
|
}
|
|
}
|
|
}
|
|
|
|
struct RecognizedSymbol {
|
|
FlatPtr address;
|
|
const KernelSymbol* symbol { nullptr };
|
|
};
|
|
|
|
static ErrorOr<bool> symbolicate(RecognizedSymbol const& symbol, Process& process, StringBuilder& builder)
|
|
{
|
|
if (symbol.address == 0)
|
|
return false;
|
|
|
|
bool mask_kernel_addresses = !process.is_superuser();
|
|
if (!symbol.symbol) {
|
|
if (!Memory::is_user_address(VirtualAddress(symbol.address))) {
|
|
TRY(builder.try_append("0xdeadc0de\n"));
|
|
} else {
|
|
if (auto* region = process.address_space().find_region_containing({ VirtualAddress(symbol.address), sizeof(FlatPtr) })) {
|
|
size_t offset = symbol.address - region->vaddr().get();
|
|
if (auto region_name = region->name(); !region_name.is_null() && !region_name.is_empty())
|
|
TRY(builder.try_appendff("{:p} {} + {:#x}\n", (void*)symbol.address, region_name, offset));
|
|
else
|
|
TRY(builder.try_appendff("{:p} {:p} + {:#x}\n", (void*)symbol.address, region->vaddr().as_ptr(), offset));
|
|
} else {
|
|
TRY(builder.try_appendff("{:p}\n", symbol.address));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
unsigned offset = symbol.address - symbol.symbol->address;
|
|
if (symbol.symbol->address == g_highest_kernel_symbol_address && offset > 4096)
|
|
TRY(builder.try_appendff("{:p}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address)));
|
|
else
|
|
TRY(builder.try_appendff("{:p} {} + {:#x}\n", (void*)(mask_kernel_addresses ? 0xdeadc0de : symbol.address), symbol.symbol->name, offset));
|
|
return true;
|
|
}
|
|
|
|
ErrorOr<NonnullOwnPtr<KString>> Thread::backtrace()
|
|
{
|
|
Vector<RecognizedSymbol, 128> recognized_symbols;
|
|
|
|
auto& process = const_cast<Process&>(this->process());
|
|
auto stack_trace = TRY(Processor::capture_stack_trace(*this));
|
|
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
|
|
ScopedAddressSpaceSwitcher switcher(process);
|
|
for (auto& frame : stack_trace) {
|
|
if (Memory::is_user_range(VirtualAddress(frame), sizeof(FlatPtr) * 2)) {
|
|
TRY(recognized_symbols.try_append({ frame }));
|
|
} else {
|
|
TRY(recognized_symbols.try_append({ frame, symbolicate_kernel_address(frame) }));
|
|
}
|
|
}
|
|
|
|
StringBuilder builder;
|
|
for (auto& symbol : recognized_symbols) {
|
|
if (!TRY(symbolicate(symbol, process, builder)))
|
|
break;
|
|
}
|
|
return KString::try_create(builder.string_view());
|
|
}
|
|
|
|
size_t Thread::thread_specific_region_alignment() const
|
|
{
|
|
return max(process().m_master_tls_alignment, alignof(ThreadSpecificData));
|
|
}
|
|
|
|
size_t Thread::thread_specific_region_size() const
|
|
{
|
|
return align_up_to(process().m_master_tls_size, thread_specific_region_alignment()) + sizeof(ThreadSpecificData);
|
|
}
|
|
|
|
ErrorOr<void> Thread::make_thread_specific_region(Badge<Process>)
|
|
{
|
|
// The process may not require a TLS region, or allocate TLS later with sys$allocate_tls (which is what dynamically loaded programs do)
|
|
if (!process().m_master_tls_region)
|
|
return {};
|
|
|
|
auto range = TRY(process().address_space().try_allocate_range({}, thread_specific_region_size()));
|
|
auto* region = TRY(process().address_space().allocate_region(range, "Thread-specific", PROT_READ | PROT_WRITE));
|
|
|
|
m_thread_specific_range = range;
|
|
|
|
SmapDisabler disabler;
|
|
auto* thread_specific_data = (ThreadSpecificData*)region->vaddr().offset(align_up_to(process().m_master_tls_size, thread_specific_region_alignment())).as_ptr();
|
|
auto* thread_local_storage = (u8*)((u8*)thread_specific_data) - align_up_to(process().m_master_tls_size, process().m_master_tls_alignment);
|
|
m_thread_specific_data = VirtualAddress(thread_specific_data);
|
|
thread_specific_data->self = thread_specific_data;
|
|
|
|
if (process().m_master_tls_size != 0)
|
|
memcpy(thread_local_storage, process().m_master_tls_region.unsafe_ptr()->vaddr().as_ptr(), process().m_master_tls_size);
|
|
|
|
return {};
|
|
}
|
|
|
|
RefPtr<Thread> Thread::from_tid(ThreadID tid)
|
|
{
|
|
return Thread::all_instances().with([&](auto& list) -> RefPtr<Thread> {
|
|
for (Thread& thread : list) {
|
|
if (thread.tid() == tid)
|
|
return thread;
|
|
}
|
|
return nullptr;
|
|
});
|
|
}
|
|
|
|
void Thread::reset_fpu_state()
|
|
{
|
|
memcpy(&m_fpu_state, &Processor::clean_fpu_state(), sizeof(FPUState));
|
|
}
|
|
|
|
bool Thread::should_be_stopped() const
|
|
{
|
|
return process().is_stopped();
|
|
}
|
|
|
|
void Thread::track_lock_acquire(LockRank rank)
|
|
{
|
|
// Nothing to do for locks without a rank.
|
|
if (rank == LockRank::None)
|
|
return;
|
|
|
|
if (m_lock_rank_mask != LockRank::None) {
|
|
// Verify we are only attempting to take a lock of a higher rank.
|
|
VERIFY(m_lock_rank_mask > rank);
|
|
}
|
|
|
|
m_lock_rank_mask |= rank;
|
|
}
|
|
|
|
void Thread::track_lock_release(LockRank rank)
|
|
{
|
|
// Nothing to do for locks without a rank.
|
|
if (rank == LockRank::None)
|
|
return;
|
|
|
|
// The rank value from the caller should only contain a single bit, otherwise
|
|
// we are disabling the tracking for multiple locks at once which will corrupt
|
|
// the lock tracking mask, and we will assert somewhere else.
|
|
auto rank_is_a_single_bit = [](auto rank_enum) -> bool {
|
|
auto rank = to_underlying(rank_enum);
|
|
auto rank_without_least_significant_bit = rank - 1;
|
|
return (rank & rank_without_least_significant_bit) == 0;
|
|
};
|
|
|
|
// We can't release locks out of order, as that would violate the ranking.
|
|
// This is validated by toggling the least significant bit of the mask, and
|
|
// then bit wise or-ing the rank we are trying to release with the resulting
|
|
// mask. If the rank we are releasing is truly the highest rank then the mask
|
|
// we get back will be equal to the current mask of stored on the thread.
|
|
auto rank_is_in_order = [](auto mask_enum, auto rank_enum) -> bool {
|
|
auto mask = to_underlying(mask_enum);
|
|
auto rank = to_underlying(rank_enum);
|
|
auto mask_without_least_significant_bit = mask - 1;
|
|
return ((mask & mask_without_least_significant_bit) | rank) == mask;
|
|
};
|
|
|
|
VERIFY(has_flag(m_lock_rank_mask, rank));
|
|
VERIFY(rank_is_a_single_bit(rank));
|
|
VERIFY(rank_is_in_order(m_lock_rank_mask, rank));
|
|
|
|
m_lock_rank_mask ^= rank;
|
|
}
|
|
}
|
|
|
|
ErrorOr<void> AK::Formatter<Kernel::Thread>::format(FormatBuilder& builder, Kernel::Thread const& value)
|
|
{
|
|
return AK::Formatter<FormatString>::format(
|
|
builder,
|
|
"{}({}:{})", value.process().name(), value.pid().value(), value.tid().value());
|
|
}
|