serenity/Userland/DevTools/UserspaceEmulator/Emulator.cpp
Ali Mohammad Pur a5d4824abe UserspaceEmulator: Pass signal information through to emulated process
With this, SA_SIGINFO is also fully (as much as the kernel, at least)
supported by UE.
2022-03-04 20:07:05 +01:00

791 lines
27 KiB
C++

/*
* Copyright (c) 2020-2021, Andreas Kling <kling@serenityos.org>
* Copyright (c) 2021, Leon Albrecht <leon2002.l@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Emulator.h"
#include "MmapRegion.h"
#include "SimpleRegion.h"
#include "SoftCPU.h"
#include <AK/Debug.h>
#include <AK/FileStream.h>
#include <AK/Format.h>
#include <AK/LexicalPath.h>
#include <AK/StringUtils.h>
#include <Kernel/API/MemoryLayout.h>
#include <LibCore/File.h>
#include <LibCore/MappedFile.h>
#include <LibELF/AuxiliaryVector.h>
#include <LibELF/Image.h>
#include <LibELF/Validation.h>
#include <LibX86/ELFSymbolProvider.h>
#include <fcntl.h>
#include <syscall.h>
#include <unistd.h>
#if defined(__GNUC__) && !defined(__clang__)
# pragma GCC optimize("O3")
#endif
namespace UserspaceEmulator {
static constexpr u32 stack_location = 0x10000000;
static constexpr size_t stack_size = 1 * MiB;
static constexpr u32 signal_trampoline_location = 0xb0000000;
static Emulator* s_the;
Emulator& Emulator::the()
{
VERIFY(s_the);
return *s_the;
}
Emulator::Emulator(String const& executable_path, Vector<StringView> const& arguments, Vector<String> const& environment)
: m_executable_path(executable_path)
, m_arguments(arguments)
, m_environment(environment)
, m_mmu(*this)
, m_cpu(make<SoftCPU>(*this))
, m_editor(Line::Editor::construct())
{
m_malloc_tracer = make<MallocTracer>(*this);
static constexpr FlatPtr userspace_range_ceiling = 0xbe000000;
#ifdef UE_ASLR
static constexpr FlatPtr page_mask = 0xfffff000u;
size_t random_offset = (get_random<u8>() % 32 * MiB) & page_mask;
FlatPtr base = userspace_range_base + random_offset;
#else
FlatPtr base = userspace_range_base;
#endif
m_range_allocator.initialize_with_range(VirtualAddress(base), userspace_range_ceiling - base);
VERIFY(!s_the);
s_the = this;
// setup_stack(arguments, environment);
register_signal_handlers();
setup_signal_trampoline();
}
Vector<ELF::AuxiliaryValue> Emulator::generate_auxiliary_vector(FlatPtr load_base, FlatPtr entry_eip, String const& executable_path, int executable_fd) const
{
// FIXME: This is not fully compatible with the auxiliary vector the kernel generates, this is just the bare
// minimum to get the loader going.
Vector<ELF::AuxiliaryValue> auxv;
// PHDR/EXECFD
// PH*
auxv.append({ ELF::AuxiliaryValue::PageSize, PAGE_SIZE });
auxv.append({ ELF::AuxiliaryValue::BaseAddress, (void*)load_base });
auxv.append({ ELF::AuxiliaryValue::Entry, (void*)entry_eip });
// FIXME: Don't hard code this? We might support other platforms later.. (e.g. x86_64)
auxv.append({ ELF::AuxiliaryValue::Platform, "i386" });
auxv.append({ ELF::AuxiliaryValue::ExecFilename, executable_path });
auxv.append({ ELF::AuxiliaryValue::ExecFileDescriptor, executable_fd });
auxv.append({ ELF::AuxiliaryValue::Null, 0L });
return auxv;
}
void Emulator::setup_stack(Vector<ELF::AuxiliaryValue> aux_vector)
{
m_range_allocator.reserve_user_range(VirtualAddress(stack_location), stack_size);
auto stack_region = make<SimpleRegion>(stack_location, stack_size);
stack_region->set_stack(true);
m_mmu.add_region(move(stack_region));
m_cpu->set_esp(shadow_wrap_as_initialized<u32>(stack_location + stack_size));
Vector<u32> argv_entries;
for (auto const& argument : m_arguments) {
m_cpu->push_string(argument);
argv_entries.append(m_cpu->esp().value());
}
Vector<u32> env_entries;
for (auto const& variable : m_environment) {
m_cpu->push_string(variable.characters());
env_entries.append(m_cpu->esp().value());
}
for (auto& auxv : aux_vector) {
if (!auxv.optional_string.is_empty()) {
m_cpu->push_string(auxv.optional_string);
auxv.auxv.a_un.a_ptr = (void*)m_cpu->esp().value();
}
}
for (ssize_t i = aux_vector.size() - 1; i >= 0; --i) {
auto& value = aux_vector[i].auxv;
m_cpu->push_buffer((u8 const*)&value, sizeof(value));
}
m_cpu->push32(shadow_wrap_as_initialized<u32>(0)); // char** envp = { envv_entries..., nullptr }
for (ssize_t i = env_entries.size() - 1; i >= 0; --i)
m_cpu->push32(shadow_wrap_as_initialized(env_entries[i]));
u32 envp = m_cpu->esp().value();
m_cpu->push32(shadow_wrap_as_initialized<u32>(0)); // char** argv = { argv_entries..., nullptr }
for (ssize_t i = argv_entries.size() - 1; i >= 0; --i)
m_cpu->push32(shadow_wrap_as_initialized(argv_entries[i]));
u32 argv = m_cpu->esp().value();
while ((m_cpu->esp().value() + 4) % 16 != 0)
m_cpu->push32(shadow_wrap_as_initialized<u32>(0)); // (alignment)
u32 argc = argv_entries.size();
m_cpu->push32(shadow_wrap_as_initialized(envp));
m_cpu->push32(shadow_wrap_as_initialized(argv));
m_cpu->push32(shadow_wrap_as_initialized(argc));
VERIFY(m_cpu->esp().value() % 16 == 0);
}
bool Emulator::load_elf()
{
auto file_or_error = Core::MappedFile::map(m_executable_path);
if (file_or_error.is_error()) {
reportln("Unable to map {}: {}", m_executable_path, file_or_error.error());
return false;
}
auto elf_image_data = file_or_error.value()->bytes();
ELF::Image executable_elf(elf_image_data);
if (!executable_elf.is_dynamic()) {
// FIXME: Support static objects
VERIFY_NOT_REACHED();
}
StringBuilder interpreter_path_builder;
auto result_or_error = ELF::validate_program_headers(*(Elf32_Ehdr const*)elf_image_data.data(), elf_image_data.size(), elf_image_data, &interpreter_path_builder);
if (result_or_error.is_error() || !result_or_error.value()) {
reportln("failed to validate ELF file");
return false;
}
auto interpreter_path = interpreter_path_builder.string_view();
VERIFY(!interpreter_path.is_null());
dbgln("interpreter: {}", interpreter_path);
auto interpreter_file_or_error = Core::MappedFile::map(interpreter_path);
VERIFY(!interpreter_file_or_error.is_error());
auto interpreter_image_data = interpreter_file_or_error.value()->bytes();
ELF::Image interpreter_image(interpreter_image_data);
constexpr FlatPtr interpreter_load_offset = 0x08000000;
interpreter_image.for_each_program_header([&](ELF::Image::ProgramHeader const& program_header) {
// Loader is not allowed to have its own TLS regions
VERIFY(program_header.type() != PT_TLS);
if (program_header.type() == PT_LOAD) {
auto start_address = program_header.vaddr().offset(interpreter_load_offset);
m_range_allocator.reserve_user_range(start_address, program_header.size_in_memory());
auto region = make<SimpleRegion>(start_address.get(), program_header.size_in_memory());
if (program_header.is_executable() && !program_header.is_writable())
region->set_text(true);
memcpy(region->data(), program_header.raw_data(), program_header.size_in_image());
memset(region->shadow_data(), 0x01, program_header.size_in_memory());
if (program_header.is_executable()) {
m_loader_text_base = region->base();
m_loader_text_size = region->size();
}
mmu().add_region(move(region));
return IterationDecision::Continue;
}
return IterationDecision::Continue;
});
auto entry_point = interpreter_image.entry().offset(interpreter_load_offset).get();
m_cpu->set_eip(entry_point);
// executable_fd will be used by the loader
int executable_fd = open(m_executable_path.characters(), O_RDONLY);
if (executable_fd < 0)
return false;
auto aux_vector = generate_auxiliary_vector(interpreter_load_offset, entry_point, m_executable_path, executable_fd);
setup_stack(move(aux_vector));
return true;
}
int Emulator::exec()
{
// X86::ELFSymbolProvider symbol_provider(*m_elf);
X86::ELFSymbolProvider* symbol_provider = nullptr;
constexpr bool trace = false;
size_t instructions_until_next_profile_dump = profile_instruction_interval();
if (is_profiling() && m_loader_text_size.has_value())
emit_profile_event(profile_stream(), "mmap", String::formatted(R"("ptr": {}, "size": {}, "name": "/usr/lib/Loader.so")", *m_loader_text_base, *m_loader_text_size));
while (!m_shutdown) {
if (m_steps_til_pause) [[likely]] {
m_cpu->save_base_eip();
auto insn = X86::Instruction::from_stream(*m_cpu, true, true);
// Exec cycle
if constexpr (trace) {
outln("{:p} \033[33;1m{}\033[0m", m_cpu->base_eip(), insn.to_string(m_cpu->base_eip(), symbol_provider));
}
(m_cpu->*insn.handler())(insn);
if (is_profiling()) {
if (instructions_until_next_profile_dump == 0) {
instructions_until_next_profile_dump = profile_instruction_interval();
emit_profile_sample(profile_stream());
} else {
--instructions_until_next_profile_dump;
}
}
if constexpr (trace) {
m_cpu->dump();
}
if (m_pending_signals) [[unlikely]] {
dispatch_one_pending_signal();
}
if (m_steps_til_pause > 0)
m_steps_til_pause--;
} else {
handle_repl();
}
}
if (auto* tracer = malloc_tracer())
tracer->dump_leak_report();
return m_exit_status;
}
void Emulator::send_signal(int signal)
{
SignalInfo info {
// FIXME: Fill this in somehow
.signal_info = {
.si_signo = signal,
.si_code = SI_USER,
.si_errno = 0,
.si_pid = getpid(),
.si_uid = geteuid(),
.si_addr = 0,
.si_status = 0,
.si_band = 0,
.si_value = {
.sival_int = 0,
},
},
.context = {},
};
did_receive_signal(signal, info, true);
}
void Emulator::handle_repl()
{
// Console interface
// FIXME: Previous Instruction**s**
// FIXME: Function names (base, call, jump)
auto saved_eip = m_cpu->eip();
m_cpu->save_base_eip();
auto insn = X86::Instruction::from_stream(*m_cpu, true, true);
// FIXME: This does not respect inlining
// another way of getting the current function is at need
if (auto symbol = symbol_at(m_cpu->base_eip()); symbol.has_value()) {
outln("[{}]: {}", symbol->lib_name, symbol->symbol);
}
outln("==> {}", create_instruction_line(m_cpu->base_eip(), insn));
for (int i = 0; i < 7; ++i) {
m_cpu->save_base_eip();
insn = X86::Instruction::from_stream(*m_cpu, true, true);
outln(" {}", create_instruction_line(m_cpu->base_eip(), insn));
}
// We don't want to increase EIP here, we just want the instructions
m_cpu->set_eip(saved_eip);
outln();
m_cpu->dump();
outln();
auto line_or_error = m_editor->get_line(">> ");
if (line_or_error.is_error())
return;
// FIXME: find a way to find a global symbol-address for run-until-call
auto help = [] {
outln("Available commands:");
outln("continue, c: Continue the execution");
outln("quit, q: Quit the execution (this will \"kill\" the program and run checks)");
outln("ret, r: Run until function returns");
outln("step, s [count]: Execute [count] instructions and then halt");
outln("signal, sig [number:int], send signal to emulated program (default: sigint:2)");
};
auto line = line_or_error.release_value();
if (line.is_empty()) {
if (m_editor->history().is_empty()) {
help();
return;
}
line = m_editor->history().last().entry;
}
auto parts = line.split_view(' ', false);
m_editor->add_to_history(line);
if (parts[0].is_one_of("s"sv, "step"sv)) {
if (parts.size() == 1) {
m_steps_til_pause = 1;
return;
}
auto number = AK::StringUtils::convert_to_int<i64>(parts[1]);
if (!number.has_value()) {
outln("usage \"step [count]\"\n\tcount can't be less than 1");
return;
}
m_steps_til_pause = number.value();
} else if (parts[0].is_one_of("c"sv, "continue"sv)) {
m_steps_til_pause = -1;
} else if (parts[0].is_one_of("r"sv, "ret"sv)) {
m_run_til_return = true;
// FIXME: This may be uninitialized
m_watched_addr = m_mmu.read32({ 0x23, m_cpu->ebp().value() + 4 }).value();
m_steps_til_pause = -1;
} else if (parts[0].is_one_of("q"sv, "quit"sv)) {
m_shutdown = true;
} else if (parts[0].is_one_of("sig"sv, "signal"sv)) {
if (parts.size() == 1) {
send_signal(SIGINT);
return;
}
if (parts.size() == 2) {
auto number = AK::StringUtils::convert_to_int<i32>(parts[1]);
if (number.has_value()) {
send_signal(*number);
return;
}
}
outln("Usage: sig [signal:int], default: SINGINT:2");
} else {
help();
}
}
Vector<FlatPtr> Emulator::raw_backtrace()
{
Vector<FlatPtr, 128> backtrace;
backtrace.append(m_cpu->base_eip());
// FIXME: Maybe do something if the backtrace has uninitialized data in the frame chain.
u32 frame_ptr = m_cpu->ebp().value();
while (frame_ptr) {
u32 ret_ptr = m_mmu.read32({ 0x23, frame_ptr + 4 }).value();
if (!ret_ptr)
break;
backtrace.append(ret_ptr);
frame_ptr = m_mmu.read32({ 0x23, frame_ptr }).value();
}
return backtrace;
}
MmapRegion const* Emulator::find_text_region(FlatPtr address)
{
MmapRegion const* matching_region = nullptr;
mmu().for_each_region_of_type<MmapRegion>([&](auto& region) {
if (!(region.is_executable() && address >= region.base() && address < region.base() + region.size()))
return IterationDecision::Continue;
matching_region = &region;
return IterationDecision::Break;
});
return matching_region;
}
// FIXME: This interface isn't the nicest
MmapRegion const* Emulator::load_library_from_address(FlatPtr address)
{
auto const* region = find_text_region(address);
if (!region)
return {};
String lib_name = region->lib_name();
if (lib_name.is_null())
return {};
String lib_path = lib_name;
if (Core::File::looks_like_shared_library(lib_name))
lib_path = String::formatted("/usr/lib/{}", lib_path);
if (!m_dynamic_library_cache.contains(lib_path)) {
auto file_or_error = Core::MappedFile::map(lib_path);
if (file_or_error.is_error())
return {};
auto image = make<ELF::Image>(file_or_error.value()->bytes());
auto debug_info = make<Debug::DebugInfo>(*image);
m_dynamic_library_cache.set(lib_path, CachedELF { file_or_error.release_value(), move(debug_info), move(image) });
}
return region;
}
MmapRegion const* Emulator::first_region_for_object(StringView name)
{
MmapRegion* ret = nullptr;
mmu().for_each_region_of_type<MmapRegion>([&](auto& region) {
if (region.lib_name() == name) {
ret = &region;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
return ret;
}
// FIXME: This disregards function inlining.
Optional<Emulator::SymbolInfo> Emulator::symbol_at(FlatPtr address)
{
auto const* address_region = load_library_from_address(address);
if (!address_region)
return {};
auto lib_name = address_region->lib_name();
auto const* first_region = (lib_name.is_null() || lib_name.is_empty()) ? address_region : first_region_for_object(lib_name);
VERIFY(first_region);
auto lib_path = lib_name;
if (Core::File::looks_like_shared_library(lib_name)) {
lib_path = String::formatted("/usr/lib/{}", lib_name);
}
auto it = m_dynamic_library_cache.find(lib_path);
auto const& elf = it->value.debug_info->elf();
auto symbol = elf.symbolicate(address - first_region->base());
auto source_position = it->value.debug_info->get_source_position(address - first_region->base());
return { { lib_name, symbol, source_position } };
}
String Emulator::create_backtrace_line(FlatPtr address)
{
auto maybe_symbol = symbol_at(address);
if (!maybe_symbol.has_value()) {
return String::formatted("=={}== {:p}", getpid(), address);
}
if (!maybe_symbol->source_position.has_value()) {
return String::formatted("=={}== {:p} [{}]: {}", getpid(), address, maybe_symbol->lib_name, maybe_symbol->symbol);
}
auto const& source_position = maybe_symbol->source_position.value();
return String::formatted("=={}== {:p} [{}]: {} (\e[34;1m{}\e[0m:{})", getpid(), address, maybe_symbol->lib_name, maybe_symbol->symbol, LexicalPath::basename(source_position.file_path), source_position.line_number);
}
void Emulator::dump_backtrace(Vector<FlatPtr> const& backtrace)
{
for (auto const& address : backtrace) {
reportln("{}", create_backtrace_line(address));
}
}
void Emulator::dump_backtrace()
{
dump_backtrace(raw_backtrace());
}
void Emulator::emit_profile_sample(AK::OutputStream& output)
{
if (!is_in_region_of_interest())
return;
StringBuilder builder;
timeval tv {};
gettimeofday(&tv, nullptr);
builder.appendff(R"~(, {{"type": "sample", "pid": {}, "tid": {}, "timestamp": {}, "lost_samples": 0, "stack": [)~", getpid(), gettid(), tv.tv_sec * 1000 + tv.tv_usec / 1000);
builder.join(',', raw_backtrace());
builder.append("]}\n");
output.write_or_error(builder.string_view().bytes());
}
void Emulator::emit_profile_event(AK::OutputStream& output, StringView event_name, String const& contents)
{
StringBuilder builder;
timeval tv {};
gettimeofday(&tv, nullptr);
builder.appendff(R"~(, {{"type": "{}", "pid": {}, "tid": {}, "timestamp": {}, "lost_samples": 0, "stack": [], {}}})~", event_name, getpid(), gettid(), tv.tv_sec * 1000 + tv.tv_usec / 1000, contents);
builder.append('\n');
output.write_or_error(builder.string_view().bytes());
}
String Emulator::create_instruction_line(FlatPtr address, X86::Instruction const& insn)
{
auto symbol = symbol_at(address);
if (!symbol.has_value() || !symbol->source_position.has_value())
return String::formatted("{:p}: {}", address, insn.to_string(address));
return String::formatted("{:p}: {} \e[34;1m{}\e[0m:{}", address, insn.to_string(address), LexicalPath::basename(symbol->source_position->file_path), symbol->source_position.value().line_number);
}
static void emulator_signal_handler(int signum, siginfo_t* signal_info, void* context)
{
Emulator::the().did_receive_signal(signum, { *signal_info, *reinterpret_cast<ucontext_t*>(context) });
}
void Emulator::register_signal_handlers()
{
struct sigaction action {
.sa_sigaction = emulator_signal_handler,
.sa_mask = 0,
.sa_flags = SA_SIGINFO,
};
sigemptyset(&action.sa_mask);
for (int signum = 0; signum < NSIG; ++signum)
sigaction(signum, &action, nullptr);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
static DefaultSignalAction default_signal_action(int signal)
{
VERIFY(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
case SIGINFO:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
VERIFY_NOT_REACHED();
}
void Emulator::dispatch_one_pending_signal()
{
int signum = -1;
for (signum = 1; signum < NSIG; ++signum) {
int mask = 1 << signum;
if (m_pending_signals & mask)
break;
}
VERIFY(signum != -1);
m_pending_signals &= ~(1 << signum);
if (((1 << (signum - 1)) & m_signal_mask) != 0)
return;
auto& handler = m_signal_handler[signum];
if (handler.handler == 0) {
// SIG_DFL
auto action = default_signal_action(signum);
if (action == DefaultSignalAction::Ignore)
return;
reportln("\n=={}== Got signal {} ({}), no handler registered", getpid(), signum, strsignal(signum));
dump_backtrace();
m_shutdown = true;
return;
}
if (handler.handler == 1) {
// SIG_IGN
return;
}
reportln("\n=={}== Got signal {} ({}), handler at {:p}", getpid(), signum, strsignal(signum), handler.handler);
auto old_esp = m_cpu->esp().value();
auto signal_info = m_signal_data[signum];
signal_info.context.uc_sigmask = m_signal_mask;
signal_info.context.uc_stack = {
.ss_sp = bit_cast<void*>(old_esp),
.ss_flags = 0,
.ss_size = 0,
};
signal_info.context.uc_mcontext = __mcontext {
.eax = m_cpu->eax().value(),
.ecx = m_cpu->ecx().value(),
.edx = m_cpu->edx().value(),
.ebx = m_cpu->ebx().value(),
.esp = m_cpu->esp().value(),
.ebp = m_cpu->ebp().value(),
.esi = m_cpu->esi().value(),
.edi = m_cpu->edi().value(),
.eip = m_cpu->eip(),
.eflags = m_cpu->eflags(),
.cs = m_cpu->cs(),
.ss = m_cpu->ss(),
.ds = m_cpu->ds(),
.es = m_cpu->es(),
// ???
.fs = 0,
.gs = 0,
};
// Align the stack to 16 bytes.
// Note that we push some elements on to the stack before the return address,
// so we need to account for this here.
constexpr static FlatPtr elements_pushed_on_stack_before_handler_address = 1; // one slot for a saved register
FlatPtr const extra_bytes_pushed_on_stack_before_handler_address = sizeof(ucontext_t) + sizeof(siginfo_t);
FlatPtr stack_alignment = (old_esp - elements_pushed_on_stack_before_handler_address * sizeof(FlatPtr) + extra_bytes_pushed_on_stack_before_handler_address) % 16;
// Also note that we have to skip the thread red-zone (if needed), so do that here.
old_esp -= stack_alignment;
m_cpu->set_esp(shadow_wrap_with_taint_from(old_esp, m_cpu->esp()));
m_cpu->push32(shadow_wrap_as_initialized(0u)); // syscall return value slot
m_cpu->push_buffer(bit_cast<u8 const*>(&signal_info.context), sizeof(ucontext_t));
auto pointer_to_ucontext = m_cpu->esp().value();
m_cpu->push_buffer(bit_cast<u8 const*>(&signal_info.signal_info), sizeof(siginfo_t));
auto pointer_to_signal_info = m_cpu->esp().value();
// FPU state, leave a 512-byte gap. FIXME: Fill this in.
m_cpu->set_esp({ m_cpu->esp().value() - 512, m_cpu->esp().shadow() });
// Leave one empty slot to align the stack for a handler call.
m_cpu->push32(shadow_wrap_as_initialized(0u));
m_cpu->push32(shadow_wrap_as_initialized(pointer_to_ucontext));
m_cpu->push32(shadow_wrap_as_initialized(pointer_to_signal_info));
m_cpu->push32(shadow_wrap_as_initialized(static_cast<u32>(signum)));
m_cpu->push32(shadow_wrap_as_initialized<u32>(handler.handler));
m_cpu->set_eip(m_signal_trampoline);
}
// Make sure the compiler doesn't "optimize away" this function:
static void signal_trampoline_dummy() __attribute__((used));
NEVER_INLINE void signal_trampoline_dummy()
{
// The trampoline preserves the current eax, pushes the signal code and
// then calls the signal handler. We do this because, when interrupting a
// blocking syscall, that syscall may return some special error code in eax;
// This error code would likely be overwritten by the signal handler, so it's
// necessary to preserve it here.
constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + 512 + 4 * sizeof(FlatPtr);
asm(
".intel_syntax noprefix\n"
".globl asm_signal_trampoline\n"
"asm_signal_trampoline:\n"
// stack state: 0, ucontext, signal_info, (alignment = 16), fpu_state (alignment = 16), 0, ucontext*, siginfo*, signal, (alignment = 16), handler
// Pop the handler into ecx
"pop ecx\n" // save handler
// we have to save eax 'cause it might be the return value from a syscall
"mov [esp+%P2], eax\n"
// Note that the stack is currently aligned to 16 bytes as we popped the extra entries above.
// and it's already setup to call the handler with the expected values on the stack.
// call the signal handler
"call ecx\n"
// drop the 4 arguments
"add esp, 16\n"
// Current stack state is just saved_eax, ucontext, signal_info, fpu_state?.
// syscall SC_sigreturn
"mov eax, %P0\n"
"int 0x82\n"
".globl asm_signal_trampoline_end\n"
"asm_signal_trampoline_end:\n"
".att_syntax"
:
: "i"(Syscall::SC_sigreturn),
"i"(offset_to_first_register_slot),
"i"(offset_to_first_register_slot - sizeof(FlatPtr)));
}
extern "C" void asm_signal_trampoline(void);
extern "C" void asm_signal_trampoline_end(void);
void Emulator::setup_signal_trampoline()
{
m_range_allocator.reserve_user_range(VirtualAddress(signal_trampoline_location), 4096);
auto trampoline_region = make<SimpleRegion>(signal_trampoline_location, 4096);
u8* trampoline = (u8*)asm_signal_trampoline;
u8* trampoline_end = (u8*)asm_signal_trampoline_end;
size_t trampoline_size = trampoline_end - trampoline;
u8* code_ptr = trampoline_region->data();
memcpy(code_ptr, trampoline, trampoline_size);
m_signal_trampoline = trampoline_region->base();
mmu().add_region(move(trampoline_region));
}
void Emulator::dump_regions() const
{
const_cast<SoftMMU&>(m_mmu).for_each_region([&](Region const& region) {
reportln("{:p}-{:p} {:c}{:c}{:c} {} {}{}{} ",
region.base(),
region.end() - 1,
region.is_readable() ? 'R' : '-',
region.is_writable() ? 'W' : '-',
region.is_executable() ? 'X' : '-',
is<MmapRegion>(region) ? static_cast<MmapRegion const&>(region).name() : "",
is<MmapRegion>(region) ? "(mmap) " : "",
region.is_stack() ? "(stack) " : "",
region.is_text() ? "(text) " : "");
return IterationDecision::Continue;
});
}
bool Emulator::is_in_libsystem() const
{
return m_cpu->base_eip() >= m_libsystem_start && m_cpu->base_eip() < m_libsystem_end;
}
bool Emulator::is_in_loader_code() const
{
if (!m_loader_text_base.has_value() || !m_loader_text_size.has_value())
return false;
return (m_cpu->base_eip() >= m_loader_text_base.value() && m_cpu->base_eip() < m_loader_text_base.value() + m_loader_text_size.value());
}
}