serenity/AK/Singleton.h
kleines Filmröllchen a6a439243f Kernel: Turn lock ranks into template parameters
This step would ideally not have been necessary (increases amount of
refactoring and templates necessary, which in turn increases build
times), but it gives us a couple of nice properties:
- SpinlockProtected inside Singleton (a very common combination) can now
  obtain any lock rank just via the template parameter. It was not
  previously possible to do this with SingletonInstanceCreator magic.
- SpinlockProtected's lock rank is now mandatory; this is the majority
  of cases and allows us to see where we're still missing proper ranks.
- The type already informs us what lock rank a lock has, which aids code
  readability and (possibly, if gdb cooperates) lock mismatch debugging.
- The rank of a lock can no longer be dynamic, which is not something we
  wanted in the first place (or made use of). Locks randomly changing
  their rank sounds like a disaster waiting to happen.
- In some places, we might be able to statically check that locks are
  taken in the right order (with the right lock rank checking
  implementation) as rank information is fully statically known.

This refactoring even more exposes the fact that Mutex has no lock rank
capabilites, which is not fixed here.
2023-01-02 18:15:27 -05:00

138 lines
3 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Assertions.h>
#include <AK/Atomic.h>
#include <AK/Noncopyable.h>
#ifdef KERNEL
# include <Kernel/Arch/Processor.h>
# include <Kernel/Locking/SpinlockProtected.h>
# include <Kernel/ScopedCritical.h>
#elif defined(AK_OS_WINDOWS)
// Forward declare to avoid pulling Windows.h into every file in existence.
extern "C" __declspec(dllimport) void __stdcall Sleep(unsigned long);
# ifndef sched_yield
# define sched_yield() Sleep(0)
# endif
#else
# include <sched.h>
#endif
#ifndef AK_OS_SERENITY
# include <new>
#endif
namespace AK {
template<typename T>
struct SingletonInstanceCreator {
static T* create()
{
return new T();
}
};
#ifdef KERNEL
template<typename T, Kernel::LockRank Rank>
struct SingletonInstanceCreator<Kernel::SpinlockProtected<T, Rank>> {
static Kernel::SpinlockProtected<T, Rank>* create()
{
return new Kernel::SpinlockProtected<T, Rank> {};
}
};
#endif
template<typename T, T* (*InitFunction)() = SingletonInstanceCreator<T>::create>
class Singleton {
AK_MAKE_NONCOPYABLE(Singleton);
AK_MAKE_NONMOVABLE(Singleton);
public:
Singleton() = default;
template<bool allow_create = true>
static T* get(Atomic<T*>& obj_var)
{
T* obj = obj_var.load(AK::memory_order_acquire);
if (FlatPtr(obj) <= 0x1) {
// If this is the first time, see if we get to initialize it
#ifdef KERNEL
Kernel::ScopedCritical critical;
#endif
if constexpr (allow_create) {
if (obj == nullptr && obj_var.compare_exchange_strong(obj, (T*)0x1, AK::memory_order_acq_rel)) {
// We're the first one
obj = InitFunction();
obj_var.store(obj, AK::memory_order_release);
return obj;
}
}
// Someone else was faster, wait until they're done
while (obj == (T*)0x1) {
#ifdef KERNEL
Kernel::Processor::wait_check();
#else
sched_yield();
#endif
obj = obj_var.load(AK::memory_order_acquire);
}
if constexpr (allow_create) {
// We should always return an instance if we allow creating one
VERIFY(obj != nullptr);
}
VERIFY(obj != (T*)0x1);
}
return obj;
}
T* ptr() const
{
return get(m_obj);
}
T* operator->() const
{
return ptr();
}
T& operator*() const
{
return *ptr();
}
operator T*() const
{
return ptr();
}
operator T&() const
{
return *ptr();
}
bool is_initialized() const
{
T* obj = m_obj.load(AK::MemoryOrder::memory_order_consume);
return FlatPtr(obj) > 0x1;
}
void ensure_instance()
{
ptr();
}
private:
mutable Atomic<T*> m_obj { nullptr };
};
}
#if USING_AK_GLOBALLY
using AK::Singleton;
#endif