serenity/Kernel/Storage/IDEChannel.cpp
Andreas Kling e46343bf9a Kernel: Make UserOrKernelBuffer R/W helpers return KResultOr<size_t>
This makes error propagation less cumbersome (and also exposed some
places where we were not doing it.)
2021-05-13 23:28:40 +02:00

542 lines
20 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/ByteBuffer.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <Kernel/IO.h>
#include <Kernel/Process.h>
#include <Kernel/Storage/ATA.h>
#include <Kernel/Storage/IDEChannel.h>
#include <Kernel/Storage/IDEController.h>
#include <Kernel/Storage/PATADiskDevice.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/WorkQueue.h>
namespace Kernel {
#define PATA_PRIMARY_IRQ 14
#define PATA_SECONDARY_IRQ 15
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(const IDEController& controller, IOAddressGroup io_group, ChannelType type)
{
return adopt_ref(*new IDEChannel(controller, io_group, type));
}
UNMAP_AFTER_INIT NonnullRefPtr<IDEChannel> IDEChannel::create(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type)
{
return adopt_ref(*new IDEChannel(controller, irq, io_group, type));
}
RefPtr<StorageDevice> IDEChannel::master_device() const
{
return m_master;
}
RefPtr<StorageDevice> IDEChannel::slave_device() const
{
return m_slave;
}
UNMAP_AFTER_INIT void IDEChannel::initialize()
{
disable_irq();
dbgln_if(PATA_DEBUG, "IDEChannel: {} IO base: {}", channel_type_string(), m_io_group.io_base());
dbgln_if(PATA_DEBUG, "IDEChannel: {} control base: {}", channel_type_string(), m_io_group.control_base());
if (m_io_group.bus_master_base().has_value())
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base: {}", channel_type_string(), m_io_group.bus_master_base().value());
else
dbgln_if(PATA_DEBUG, "IDEChannel: {} bus master base disabled", channel_type_string());
m_parent_controller->enable_pin_based_interrupts();
// reset the channel
u8 device_control = m_io_group.control_base().in<u8>();
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control | (1 << 2));
// Wait 30 milliseconds
IO::delay(30000);
m_io_group.control_base().out<u8>(device_control);
// Wait up to 30 seconds before failing
if (!wait_until_not_busy(false, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on master stuck");
return;
}
// Wait up to 30 seconds before failing
if (!wait_until_not_busy(true, 30000)) {
dbgln("IDEChannel: reset failed, busy flag on slave stuck");
return;
}
detect_disks();
// Note: calling to detect_disks could generate an interrupt, clear it if that's the case
clear_pending_interrupts();
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, u8 irq, IOAddressGroup io_group, ChannelType type)
: IRQHandler(irq)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
initialize();
}
UNMAP_AFTER_INIT IDEChannel::IDEChannel(const IDEController& controller, IOAddressGroup io_group, ChannelType type)
: IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ)
, m_channel_type(type)
, m_io_group(io_group)
, m_parent_controller(controller)
{
initialize();
}
void IDEChannel::clear_pending_interrupts() const
{
m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
}
UNMAP_AFTER_INIT IDEChannel::~IDEChannel()
{
}
void IDEChannel::start_request(AsyncBlockDeviceRequest& request, bool is_slave, u16 capabilities)
{
Locker locker(m_lock);
VERIFY(m_current_request.is_null());
dbgln_if(PATA_DEBUG, "IDEChannel::start_request");
m_current_request = request;
m_current_request_block_index = 0;
m_current_request_flushing_cache = false;
if (request.request_type() == AsyncBlockDeviceRequest::Read)
ata_read_sectors(is_slave, capabilities);
else
ata_write_sectors(is_slave, capabilities);
}
void IDEChannel::complete_current_request(AsyncDeviceRequest::RequestResult result)
{
// NOTE: this may be called from the interrupt handler!
VERIFY(m_current_request);
VERIFY(m_request_lock.is_locked());
// Now schedule reading back the buffer as soon as we leave the irq handler.
// This is important so that we can safely write the buffer back,
// which could cause page faults. Note that this may be called immediately
// before Processor::deferred_call_queue returns!
g_io_work->queue([this, result]() {
dbgln_if(PATA_DEBUG, "IDEChannel::complete_current_request result: {}", (int)result);
Locker locker(m_lock);
VERIFY(m_current_request);
auto current_request = m_current_request;
m_current_request.clear();
current_request->complete(result);
});
}
static void print_ide_status(u8 status)
{
dbgln("IDEChannel: print_ide_status: DRQ={} BSY={}, DRDY={}, DSC={}, DF={}, CORR={}, IDX={}, ERR={}",
(status & ATA_SR_DRQ) != 0,
(status & ATA_SR_BSY) != 0,
(status & ATA_SR_DRDY) != 0,
(status & ATA_SR_DSC) != 0,
(status & ATA_SR_DF) != 0,
(status & ATA_SR_CORR) != 0,
(status & ATA_SR_IDX) != 0,
(status & ATA_SR_ERR) != 0);
}
void IDEChannel::try_disambiguate_error()
{
VERIFY(m_lock.is_locked());
dbgln("IDEChannel: Error cause:");
switch (m_device_error) {
case ATA_ER_BBK:
dbgln("IDEChannel: - Bad block");
break;
case ATA_ER_UNC:
dbgln("IDEChannel: - Uncorrectable data");
break;
case ATA_ER_MC:
dbgln("IDEChannel: - Media changed");
break;
case ATA_ER_IDNF:
dbgln("IDEChannel: - ID mark not found");
break;
case ATA_ER_MCR:
dbgln("IDEChannel: - Media change request");
break;
case ATA_ER_ABRT:
dbgln("IDEChannel: - Command aborted");
break;
case ATA_ER_TK0NF:
dbgln("IDEChannel: - Track 0 not found");
break;
case ATA_ER_AMNF:
dbgln("IDEChannel: - No address mark");
break;
default:
dbgln("IDEChannel: - No one knows");
break;
}
}
void IDEChannel::handle_irq(const RegisterState&)
{
u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
m_entropy_source.add_random_event(status);
ScopedSpinLock lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel: interrupt: DRQ={}, BSY={}, DRDY={}",
(status & ATA_SR_DRQ) != 0,
(status & ATA_SR_BSY) != 0,
(status & ATA_SR_DRDY) != 0);
if (!m_current_request) {
dbgln("IDEChannel: IRQ but no pending request!");
return;
}
if (status & ATA_SR_ERR) {
print_ide_status(status);
m_device_error = m_io_group.io_base().offset(ATA_REG_ERROR).in<u8>();
dbgln("IDEChannel: Error {:#02x}!", (u8)m_device_error);
try_disambiguate_error();
complete_current_request(AsyncDeviceRequest::Failure);
return;
}
m_device_error = 0;
// Now schedule reading/writing the buffer as soon as we leave the irq handler.
// This is important so that we can safely access the buffers, which could
// trigger page faults
g_io_work->queue([this]() {
Locker locker(m_lock);
ScopedSpinLock lock(m_request_lock);
if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) {
dbgln_if(PATA_DEBUG, "IDEChannel: Read block {}/{}", m_current_request_block_index, m_current_request->block_count());
if (ata_do_read_sector()) {
if (++m_current_request_block_index >= m_current_request->block_count()) {
complete_current_request(AsyncDeviceRequest::Success);
return;
}
// Wait for the next block
enable_irq();
}
} else {
if (!m_current_request_flushing_cache) {
dbgln_if(PATA_DEBUG, "IDEChannel: Wrote block {}/{}", m_current_request_block_index, m_current_request->block_count());
if (++m_current_request_block_index >= m_current_request->block_count()) {
// We read the last block, flush cache
VERIFY(!m_current_request_flushing_cache);
m_current_request_flushing_cache = true;
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_CACHE_FLUSH);
} else {
// Read next block
ata_do_write_sector();
}
} else {
complete_current_request(AsyncDeviceRequest::Success);
}
}
});
}
static void io_delay()
{
for (int i = 0; i < 4; ++i)
IO::in8(0x3f6);
}
bool IDEChannel::wait_until_not_busy(bool slave, size_t milliseconds_timeout)
{
IO::delay(20);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (slave << 4)); // First, we need to select the drive itself
IO::delay(20);
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) {
IO::delay(1000);
time_elapsed++;
}
return time_elapsed <= milliseconds_timeout;
}
bool IDEChannel::wait_until_not_busy(size_t milliseconds_timeout)
{
size_t time_elapsed = 0;
while (m_io_group.control_base().in<u8>() & ATA_SR_BSY && time_elapsed <= milliseconds_timeout) {
IO::delay(1000);
time_elapsed++;
}
return time_elapsed <= milliseconds_timeout;
}
String IDEChannel::channel_type_string() const
{
if (m_channel_type == ChannelType::Primary)
return "Primary";
return "Secondary";
}
UNMAP_AFTER_INIT void IDEChannel::detect_disks()
{
auto channel_string = [](u8 i) -> const char* {
if (i == 0)
return "master";
return "slave";
};
// There are only two possible disks connected to a channel
for (auto i = 0; i < 2; i++) {
// We need to select the drive and then we wait 20 microseconds... and it doesn't hurt anything so let's just do it.
IO::delay(20);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (i << 4)); // First, we need to select the drive itself
IO::delay(20);
auto status = m_io_group.control_base().in<u8>();
if (status == 0x0) {
dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected!", channel_type_string().to_lowercase(), channel_string(i));
continue;
}
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_IDENTIFY); // Send the ATA_IDENTIFY command
// Wait 10 second for the BSY flag to clear
if (!wait_until_not_busy(2000)) {
dbgln_if(PATA_DEBUG, "IDEChannel: No {} {} disk detected, BSY flag was not reset!", channel_type_string().to_lowercase(), channel_string(i));
continue;
}
bool check_for_atapi = false;
bool device_presence = true;
PATADiskDevice::InterfaceType interface_type = PATADiskDevice::InterfaceType::ATA;
size_t milliseconds_elapsed = 0;
for (;;) {
// Wait about 10 seconds
if (milliseconds_elapsed > 2000)
break;
u8 status = m_io_group.control_base().in<u8>();
if (status & ATA_SR_ERR) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device is not ATA. Will check for ATAPI.", channel_type_string(), channel_string(i));
check_for_atapi = true;
break;
}
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRQ)) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device appears to be ATA.", channel_type_string(), channel_string(i));
interface_type = PATADiskDevice::InterfaceType::ATA;
break;
}
if (status == 0 || status == 0xFF) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device presence - none.", channel_type_string(), channel_string(i));
device_presence = false;
break;
}
IO::delay(1000);
milliseconds_elapsed++;
}
if (!device_presence) {
continue;
}
if (milliseconds_elapsed > 10000) {
dbgln_if(PATA_DEBUG, "IDEChannel: {} {} device state unknown. Timeout exceeded.", channel_type_string(), channel_string(i));
continue;
}
if (check_for_atapi) {
u8 cl = m_io_group.io_base().offset(ATA_REG_LBA1).in<u8>();
u8 ch = m_io_group.io_base().offset(ATA_REG_LBA2).in<u8>();
if ((cl == 0x14 && ch == 0xEB) || (cl == 0x69 && ch == 0x96)) {
interface_type = PATADiskDevice::InterfaceType::ATAPI;
dbgln("IDEChannel: {} {} device appears to be ATAPI. We're going to ignore it for now as we don't support it.", channel_type_string(), channel_string(i));
continue;
} else {
dbgln("IDEChannel: {} {} device doesn't appear to be ATA or ATAPI. Ignoring it.", channel_type_string(), channel_string(i));
continue;
}
}
ByteBuffer wbuf = ByteBuffer::create_uninitialized(512);
ByteBuffer bbuf = ByteBuffer::create_uninitialized(512);
u8* b = bbuf.data();
u16* w = (u16*)wbuf.data();
for (u32 i = 0; i < 256; ++i) {
u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in<u16>();
*(w++) = data;
*(b++) = MSB(data);
*(b++) = LSB(data);
}
// "Unpad" the device name string.
for (u32 i = 93; i > 54 && bbuf[i] == ' '; --i)
bbuf[i] = 0;
volatile ATAIdentifyBlock& identify_block = (volatile ATAIdentifyBlock&)(*wbuf.data());
u16 capabilities = identify_block.capabilities[0];
// If the drive is so old that it doesn't support LBA, ignore it.
if (!(capabilities & ATA_CAP_LBA))
continue;
u64 max_addressable_block = identify_block.max_28_bit_addressable_logical_sector;
// if we support 48-bit LBA, use that value instead.
if (identify_block.commands_and_feature_sets_supported[1] & (1 << 10))
max_addressable_block = identify_block.user_addressable_logical_sectors_count;
dbgln("IDEChannel: {} {} {} device found: Name={}, Capacity={}, Capabilities=0x{:04x}", channel_type_string(), channel_string(i), interface_type == PATADiskDevice::InterfaceType::ATA ? "ATA" : "ATAPI", ((char*)bbuf.data() + 54), max_addressable_block * 512, capabilities);
if (i == 0) {
m_master = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Master, interface_type, capabilities, max_addressable_block);
} else {
m_slave = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Slave, interface_type, capabilities, max_addressable_block);
}
}
}
void IDEChannel::ata_access(Direction direction, bool slave_request, u64 lba, u8 block_count, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
LBAMode lba_mode;
u8 head = 0;
VERIFY(capabilities & ATA_CAP_LBA);
if (lba >= 0x10000000) {
lba_mode = LBAMode::FortyEightBit;
head = 0;
} else {
lba_mode = LBAMode::TwentyEightBit;
head = (lba & 0xF000000) >> 24;
}
// Wait 1 second
wait_until_not_busy(1000);
// We need to select the drive and then we wait 20 microseconds... and it doesn't hurt anything so let's just do it.
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xE0 | (static_cast<u8>(slave_request) << 4) | head);
IO::delay(20);
if (lba_mode == LBAMode::FortyEightBit) {
m_io_group.io_base().offset(ATA_REG_SECCOUNT1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA3).out<u8>((lba & 0xFF000000) >> 24);
m_io_group.io_base().offset(ATA_REG_LBA4).out<u8>((lba & 0xFF00000000ull) >> 32);
m_io_group.io_base().offset(ATA_REG_LBA5).out<u8>((lba & 0xFF0000000000ull) >> 40);
}
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(block_count);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>((lba & 0x000000FF) >> 0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((lba & 0x0000FF00) >> 8);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((lba & 0x00FF0000) >> 16);
for (;;) {
auto status = m_io_group.control_base().in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
}
send_ata_io_command(lba_mode, direction);
enable_irq();
}
void IDEChannel::send_ata_io_command(LBAMode lba_mode, Direction direction) const
{
if (lba_mode != LBAMode::FortyEightBit) {
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(direction == Direction::Read ? ATA_CMD_READ_PIO : ATA_CMD_WRITE_PIO);
} else {
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(direction == Direction::Read ? ATA_CMD_READ_PIO_EXT : ATA_CMD_WRITE_PIO_EXT);
}
}
bool IDEChannel::ata_do_read_sector()
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
VERIFY(!m_current_request.is_null());
dbgln_if(PATA_DEBUG, "IDEChannel::ata_do_read_sector");
auto& request = *m_current_request;
auto out_buffer = request.buffer().offset(m_current_request_block_index * 512);
auto result = request.write_to_buffer_buffered<512>(out_buffer, 512, [&](u8* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
*(u16*)&buffer[i] = IO::in16(m_io_group.io_base().offset(ATA_REG_DATA).get());
return buffer_bytes;
});
if (result.is_error()) {
// TODO: Do we need to abort the PATA read if this wasn't the last block?
complete_current_request(AsyncDeviceRequest::MemoryFault);
return false;
}
return true;
}
// FIXME: This doesn't quite work and locks up reading LBA 3.
void IDEChannel::ata_read_sectors(bool slave_request, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(!m_current_request.is_null());
VERIFY(m_current_request->block_count() <= 256);
ScopedSpinLock m_lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel::ata_read_sectors");
dbgln_if(PATA_DEBUG, "IDEChannel: Reading {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index());
ata_access(Direction::Read, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities);
}
void IDEChannel::ata_do_write_sector()
{
VERIFY(m_lock.is_locked());
VERIFY(m_request_lock.is_locked());
VERIFY(!m_current_request.is_null());
auto& request = *m_current_request;
io_delay();
while ((m_io_group.control_base().in<u8>() & ATA_SR_BSY) || !(m_io_group.control_base().in<u8>() & ATA_SR_DRQ))
;
u8 status = m_io_group.control_base().in<u8>();
VERIFY(status & ATA_SR_DRQ);
auto in_buffer = request.buffer().offset(m_current_request_block_index * 512);
dbgln_if(PATA_DEBUG, "IDEChannel: Writing 512 bytes (part {}) (status={:#02x})...", m_current_request_block_index, status);
auto result = request.read_from_buffer_buffered<512>(in_buffer, 512, [&](u8 const* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), *(const u16*)&buffer[i]);
return buffer_bytes;
});
if (result.is_error())
complete_current_request(AsyncDeviceRequest::MemoryFault);
}
// FIXME: I'm assuming this doesn't work based on the fact PIO read doesn't work.
void IDEChannel::ata_write_sectors(bool slave_request, u16 capabilities)
{
VERIFY(m_lock.is_locked());
VERIFY(!m_current_request.is_null());
VERIFY(m_current_request->block_count() <= 256);
ScopedSpinLock m_lock(m_request_lock);
dbgln_if(PATA_DEBUG, "IDEChannel: Writing {} sector(s) @ LBA {}", m_current_request->block_count(), m_current_request->block_index());
ata_access(Direction::Write, slave_request, m_current_request->block_index(), m_current_request->block_count(), capabilities);
ata_do_write_sector();
}
}