mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-23 01:41:59 -05:00
22d8778437
Matrix inversion comes in quite handy in 3D projections, so let's add `Matrix<N,T>.inverse()`. To support matrix inversion, the following methods are added: * `Matrix.first_minor()` See: https://en.wikipedia.org/wiki/Minor_(linear_algebra) * `Matrix.adjugate()` See: https://en.wikipedia.org/wiki/Adjugate_matrix * `Matrix.determinant()` See: https://en.wikipedia.org/wiki/Determinant * `Matrix.inverse()` See: https://en.wikipedia.org/wiki/Invertible_matrix * `Matrix.operator/()` To support easy matrix division :-) Code loosely based on an implementation listed here: https://www.geeksforgeeks.org/adjoint-inverse-matrix/
180 lines
4.7 KiB
C++
180 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <AK/Types.h>
|
|
#include <initializer_list>
|
|
|
|
namespace Gfx {
|
|
|
|
template<size_t N, typename T>
|
|
class Matrix {
|
|
public:
|
|
static constexpr size_t Size = N;
|
|
|
|
constexpr Matrix() = default;
|
|
constexpr Matrix(std::initializer_list<T> elements)
|
|
{
|
|
VERIFY(elements.size() == N * N);
|
|
size_t i = 0;
|
|
for (auto& element : elements) {
|
|
m_elements[i / N][i % N] = element;
|
|
++i;
|
|
}
|
|
}
|
|
|
|
template<typename... Args>
|
|
constexpr Matrix(Args... args)
|
|
: Matrix({ (T)args... })
|
|
{
|
|
}
|
|
|
|
Matrix(const Matrix& other)
|
|
{
|
|
__builtin_memcpy(m_elements, other.elements(), sizeof(T) * N * N);
|
|
}
|
|
|
|
constexpr auto elements() const { return m_elements; }
|
|
constexpr auto elements() { return m_elements; }
|
|
|
|
constexpr Matrix operator*(const Matrix& other) const
|
|
{
|
|
Matrix product;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
auto& element = product.m_elements[i][j];
|
|
|
|
if constexpr (N == 4) {
|
|
element = m_elements[i][0] * other.m_elements[0][j]
|
|
+ m_elements[i][1] * other.m_elements[1][j]
|
|
+ m_elements[i][2] * other.m_elements[2][j]
|
|
+ m_elements[i][3] * other.m_elements[3][j];
|
|
} else if constexpr (N == 3) {
|
|
element = m_elements[i][0] * other.m_elements[0][j]
|
|
+ m_elements[i][1] * other.m_elements[1][j]
|
|
+ m_elements[i][2] * other.m_elements[2][j];
|
|
} else if constexpr (N == 2) {
|
|
element = m_elements[i][0] * other.m_elements[0][j]
|
|
+ m_elements[i][1] * other.m_elements[1][j];
|
|
} else if constexpr (N == 1) {
|
|
element = m_elements[i][0] * other.m_elements[0][j];
|
|
} else {
|
|
T value {};
|
|
for (size_t k = 0; k < N; ++k)
|
|
value += m_elements[i][k] * other.m_elements[k][j];
|
|
|
|
element = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
return product;
|
|
}
|
|
|
|
constexpr Matrix operator/(T divisor) const
|
|
{
|
|
Matrix division;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
division.m_elements[i][j] = m_elements[i][j] / divisor;
|
|
}
|
|
}
|
|
return division;
|
|
}
|
|
|
|
constexpr Matrix adjugate() const
|
|
{
|
|
if constexpr (N == 1)
|
|
return Matrix(1);
|
|
|
|
Matrix adjugate;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
int sign = (i + j) % 2 == 0 ? 1 : -1;
|
|
adjugate.m_elements[j][i] = sign * first_minor(i, j);
|
|
}
|
|
}
|
|
return adjugate;
|
|
}
|
|
|
|
constexpr T determinant() const
|
|
{
|
|
if constexpr (N == 1) {
|
|
return m_elements[0][0];
|
|
} else {
|
|
T result = {};
|
|
int sign = 1;
|
|
for (size_t j = 0; j < N; ++j) {
|
|
result += sign * m_elements[0][j] * first_minor(0, j);
|
|
sign *= -1;
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
|
|
constexpr T first_minor(size_t skip_row, size_t skip_column) const
|
|
{
|
|
static_assert(N > 1);
|
|
VERIFY(skip_row < N);
|
|
VERIFY(skip_column < N);
|
|
|
|
Matrix<N - 1, T> first_minor;
|
|
constexpr auto new_size = N - 1;
|
|
size_t k = 0;
|
|
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
if (i == skip_row || j == skip_column)
|
|
continue;
|
|
|
|
first_minor.elements()[k / new_size][k % new_size] = m_elements[i][j];
|
|
++k;
|
|
}
|
|
}
|
|
|
|
return first_minor.determinant();
|
|
}
|
|
|
|
constexpr static Matrix identity()
|
|
{
|
|
Matrix result;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
if (i == j)
|
|
result.m_elements[i][j] = 1;
|
|
else
|
|
result.m_elements[i][j] = 0;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
constexpr Matrix inverse() const
|
|
{
|
|
auto det = determinant();
|
|
VERIFY(det != 0);
|
|
return adjugate() / det;
|
|
}
|
|
|
|
constexpr Matrix transpose() const
|
|
{
|
|
Matrix result;
|
|
for (size_t i = 0; i < N; ++i) {
|
|
for (size_t j = 0; j < N; ++j) {
|
|
result.m_elements[i][j] = m_elements[j][i];
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
T m_elements[N][N];
|
|
};
|
|
|
|
}
|
|
|
|
using Gfx::Matrix;
|