serenity/Kernel/init.cpp

471 lines
14 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/Types.h>
#include <Kernel/ACPI/ACPIDynamicParser.h>
#include <Kernel/ACPI/ACPIStaticParser.h>
#include <Kernel/ACPI/DMIDecoder.h>
#include <Kernel/ACPI/MultiProcessorParser.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/CMOS.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/BXVGADevice.h>
#include <Kernel/Devices/DiskPartition.h>
#include <Kernel/Devices/EBRPartitionTable.h>
#include <Kernel/Devices/FullDevice.h>
#include <Kernel/Devices/GPTPartitionTable.h>
#include <Kernel/Devices/KeyboardDevice.h>
#include <Kernel/Devices/MBRPartitionTable.h>
#include <Kernel/Devices/MBVGADevice.h>
#include <Kernel/Devices/NullDevice.h>
#include <Kernel/Devices/PATAChannel.h>
#include <Kernel/Devices/PATADiskDevice.h>
#include <Kernel/Devices/PS2MouseDevice.h>
#include <Kernel/Devices/RandomDevice.h>
#include <Kernel/Devices/SB16.h>
#include <Kernel/Devices/SerialDevice.h>
#include <Kernel/Devices/VMWareBackdoor.h>
#include <Kernel/Devices/ZeroDevice.h>
#include <Kernel/FileSystem/Ext2FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Heap/SlabAllocator.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/Interrupts/APIC.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Interrupts/PIC.h>
#include <Kernel/KSyms.h>
#include <Kernel/Multiboot.h>
#include <Kernel/Net/LoopbackAdapter.h>
#include <Kernel/Net/NetworkTask.h>
#include <Kernel/PCI/Access.h>
#include <Kernel/PCI/Initializer.h>
#include <Kernel/Process.h>
#include <Kernel/RTC.h>
#include <Kernel/Random.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Tasks/FinalizerTask.h>
#include <Kernel/Tasks/SyncTask.h>
#include <Kernel/TTY/PTYMultiplexer.h>
#include <Kernel/TTY/VirtualConsole.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
// Defined in the linker script
typedef void (*ctor_func_t)();
extern ctor_func_t start_ctors;
extern ctor_func_t end_ctors;
extern u32 __stack_chk_guard;
u32 __stack_chk_guard;
namespace Kernel {
[[noreturn]] static void init_stage2();
static void setup_serial_debug();
static void setup_acpi();
static void setup_vmmouse();
static void setup_pci();
static void setup_interrupts();
static void setup_time_management();
VirtualConsole* tty0;
// SerenityOS Kernel C++ entry point :^)
//
// This is where C++ execution begins, after boot.S transfers control here.
//
// The purpose of init() is to start multi-tasking. It does the bare minimum
// amount of work needed to start the scheduler.
//
// Once multi-tasking is ready, we spawn a new thread that starts in the
// init_stage2() function. Initialization continues there.
extern "C" [[noreturn]] void init()
{
setup_serial_debug();
cpu_setup();
kmalloc_init();
slab_alloc_init();
CommandLine::initialize(reinterpret_cast<const char*>(low_physical_to_virtual(multiboot_info_ptr->cmdline)));
MemoryManager::initialize();
gdt_init();
idt_init();
// Invoke all static global constructors in the kernel.
// Note that we want to do this as early as possible.
for (ctor_func_t* ctor = &start_ctors; ctor < &end_ctors; ctor++)
(*ctor)();
setup_interrupts();
setup_acpi();
new VFS;
new KeyboardDevice;
new PS2MouseDevice;
setup_vmmouse();
new Console;
klog() << "Starting SerenityOS...";
__stack_chk_guard = get_good_random<u32>();
setup_time_management();
new NullDevice;
if (!get_serial_debug())
new SerialDevice(SERIAL_COM1_ADDR, 64);
new SerialDevice(SERIAL_COM2_ADDR, 65);
new SerialDevice(SERIAL_COM3_ADDR, 66);
new SerialDevice(SERIAL_COM4_ADDR, 67);
VirtualConsole::initialize();
tty0 = new VirtualConsole(0, VirtualConsole::AdoptCurrentVGABuffer);
new VirtualConsole(1);
VirtualConsole::switch_to(0);
Process::initialize();
Thread::initialize();
Thread* init_stage2_thread = nullptr;
Process::create_kernel_process(init_stage2_thread, "init_stage2", init_stage2);
Scheduler::pick_next();
sti();
Scheduler::idle_loop();
ASSERT_NOT_REACHED();
}
void init_stage2()
{
SyncTask::spawn();
FinalizerTask::spawn();
// Sample test to see if the ACPI parser is working...
klog() << "ACPI: HPET table @ " << ACPI::Parser::the().find_table("HPET");
setup_pci();
if (kernel_command_line().contains("text_debug")) {
dbg() << "Text mode enabled";
} else {
if (multiboot_info_ptr->framebuffer_type == 1 || multiboot_info_ptr->framebuffer_type == 2) {
new MBVGADevice(
PhysicalAddress((u32)(multiboot_info_ptr->framebuffer_addr)),
multiboot_info_ptr->framebuffer_pitch,
multiboot_info_ptr->framebuffer_width,
multiboot_info_ptr->framebuffer_height);
} else {
new BXVGADevice;
}
}
LoopbackAdapter::the();
Syscall::initialize();
new ZeroDevice;
new FullDevice;
new RandomDevice;
new PTYMultiplexer;
new SB16;
bool dmi_unreliable = kernel_command_line().contains("dmi_unreliable");
if (dmi_unreliable) {
DMIDecoder::initialize_untrusted();
} else {
DMIDecoder::initialize();
}
bool text_debug = kernel_command_line().contains("text_debug");
bool force_pio = kernel_command_line().contains("force_pio");
auto root = kernel_command_line().get("root");
if (root.is_empty()) {
root = "/dev/hda";
}
if (!root.starts_with("/dev/hda")) {
klog() << "init_stage2: root filesystem must be on the first IDE hard drive (/dev/hda)";
hang();
}
auto pata0 = PATAChannel::create(PATAChannel::ChannelType::Primary, force_pio);
NonnullRefPtr<BlockDevice> root_dev = *pata0->master_device();
root = root.substring(strlen("/dev/hda"), root.length() - strlen("/dev/hda"));
if (root.length()) {
bool ok;
unsigned partition_number = root.to_uint(ok);
if (!ok) {
klog() << "init_stage2: couldn't parse partition number from root kernel parameter";
hang();
}
MBRPartitionTable mbr(root_dev);
if (!mbr.initialize()) {
klog() << "init_stage2: couldn't read MBR from disk";
hang();
}
if (mbr.is_protective_mbr()) {
dbg() << "GPT Partitioned Storage Detected!";
GPTPartitionTable gpt(root_dev);
if (!gpt.initialize()) {
klog() << "init_stage2: couldn't read GPT from disk";
hang();
}
auto partition = gpt.partition(partition_number);
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number;
hang();
}
root_dev = *partition;
} else {
dbg() << "MBR Partitioned Storage Detected!";
if (mbr.contains_ebr()) {
EBRPartitionTable ebr(root_dev);
if (!ebr.initialize()) {
klog() << "init_stage2: couldn't read EBR from disk";
hang();
}
auto partition = ebr.partition(partition_number);
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number;
hang();
}
root_dev = *partition;
} else {
if (partition_number < 1 || partition_number > 4) {
klog() << "init_stage2: invalid partition number " << partition_number << "; expected 1 to 4";
hang();
}
auto partition = mbr.partition(partition_number);
if (!partition) {
klog() << "init_stage2: couldn't get partition " << partition_number;
hang();
}
root_dev = *partition;
}
}
}
auto e2fs = Ext2FS::create(*FileDescription::create(root_dev));
if (!e2fs->initialize()) {
klog() << "init_stage2: couldn't open root filesystem";
hang();
}
if (!VFS::the().mount_root(e2fs)) {
klog() << "VFS::mount_root failed";
hang();
}
Process::current->set_root_directory(VFS::the().root_custody());
load_kernel_symbol_table();
int error;
// SystemServer will start WindowServer, which will be doing graphics.
// From this point on we don't want to touch the VGA text terminal or
// accept keyboard input.
if (text_debug) {
tty0->set_graphical(false);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/Shell", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
klog() << "init_stage2: error spawning Shell: " << error;
hang();
}
thread->set_priority(THREAD_PRIORITY_HIGH);
} else {
tty0->set_graphical(true);
Thread* thread = nullptr;
Process::create_user_process(thread, "/bin/SystemServer", (uid_t)0, (gid_t)0, (pid_t)0, error, {}, {}, tty0);
if (error != 0) {
klog() << "init_stage2: error spawning SystemServer: " << error;
hang();
}
thread->set_priority(THREAD_PRIORITY_HIGH);
}
{
Thread* thread = nullptr;
Process::create_kernel_process(thread, "NetworkTask", NetworkTask_main);
}
Process::current->sys$exit(0);
ASSERT_NOT_REACHED();
}
void setup_serial_debug()
{
// this is only used one time, directly below here. we can't use this part
// of libc at this point in the boot process, or we'd just pull strstr in
// from <string.h>.
auto bad_prefix_check = [](const char* str, const char* search) -> bool {
while (*search)
if (*search++ != *str++)
return false;
return true;
};
// serial_debug will output all the klog() and dbg() data to COM1 at
// 8-N-1 57600 baud. this is particularly useful for debugging the boot
// process on live hardware.
//
// note: it must be the first option in the boot cmdline.
u32 cmdline = low_physical_to_virtual(multiboot_info_ptr->cmdline);
if (cmdline && bad_prefix_check(reinterpret_cast<const char*>(cmdline), "serial_debug"))
set_serial_debug(true);
}
extern "C" {
multiboot_info_t* multiboot_info_ptr;
}
// Define some Itanium C++ ABI methods to stop the linker from complaining
// If we actually call these something has gone horribly wrong
void* __dso_handle __attribute__((visibility("hidden")));
extern "C" int __cxa_atexit(void (*)(void*), void*, void*)
{
ASSERT_NOT_REACHED();
return 0;
}
void setup_acpi()
{
if (!kernel_command_line().contains("acpi")) {
ACPI::DynamicParser::initialize_without_rsdp();
return;
}
auto acpi = kernel_command_line().get("acpi");
if (acpi == "off") {
ACPI::Parser::initialize_limited();
return;
}
if (acpi == "on") {
ACPI::DynamicParser::initialize_without_rsdp();
return;
}
if (acpi == "limited") {
ACPI::StaticParser::initialize_without_rsdp();
return;
}
klog() << "acpi boot argmuent has an invalid value.";
hang();
}
void setup_vmmouse()
{
VMWareBackdoor::initialize();
if (!kernel_command_line().contains("vmmouse")) {
VMWareBackdoor::the().enable_absolute_vmmouse();
return;
}
auto vmmouse = kernel_command_line().get("vmmouse");
if (vmmouse == "off")
return;
if (vmmouse == "on") {
VMWareBackdoor::the().enable_absolute_vmmouse();
return;
}
klog() << "vmmouse boot argmuent has an invalid value.";
hang();
}
void setup_pci()
{
if (!kernel_command_line().contains("pci_mmio")) {
PCI::Initializer::the().test_and_initialize(false);
PCI::Initializer::the().dismiss();
return;
}
auto pci_mmio = kernel_command_line().get("pci_mmio");
if (pci_mmio == "on") {
PCI::Initializer::the().test_and_initialize(false);
} else if (pci_mmio == "off") {
PCI::Initializer::the().test_and_initialize(true);
} else {
klog() << "pci_mmio boot argmuent has an invalid value.";
hang();
}
PCI::Initializer::the().dismiss();
}
void setup_interrupts()
{
InterruptManagement::initialize();
if (!kernel_command_line().contains("smp")) {
InterruptManagement::the().switch_to_pic_mode();
return;
}
auto smp = kernel_command_line().get("smp");
if (smp == "off") {
InterruptManagement::the().switch_to_pic_mode();
return;
}
if (smp == "on") {
InterruptManagement::the().switch_to_ioapic_mode();
return;
}
klog() << "smp boot argmuent has an invalid value.";
hang();
}
void setup_time_management()
{
if (!kernel_command_line().contains("time")) {
TimeManagement::initialize(true);
return;
}
auto time = kernel_command_line().get("time");
if (time == "legacy") {
TimeManagement::initialize(false);
return;
}
if (time == "modern") {
TimeManagement::initialize(true);
return;
}
kprintf("time boot argmuent has an invalid value.\n");
hang();
}
}