serenity/AK/UFixedBigInt.h
Daniel Bertalan 2ee39ed5f0 AK: Fix UFixedBigInt not building with Clang
Clang does not like that we are trying to refer to our own size while
our declaration is not yet complete, and fails to compile this file.
This is fixed by introducing a function which returns the correct
sizeof. This only gets evaluated in the `requires` clause after the
whole class has been parsed, so it will compile fine.
2021-07-08 10:11:00 +02:00

775 lines
21 KiB
C++

/*
* Copyright (c) 2021, Leon Albrecht <leon2002.la@gmail.com>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Checked.h>
#include <AK/Concepts.h>
#include <AK/Format.h>
#include <AK/NumericLimits.h>
#include <AK/StdLibExtraDetails.h>
#include <AK/StdLibExtras.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
namespace AK {
template<typename T>
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt;
// FIXME: This breaks formatting
// template<typename T>
// constexpr inline bool Detail::IsIntegral<UFixedBigInt<T>> = true;
template<typename T>
constexpr inline bool Detail::IsUnsigned<UFixedBigInt<T>> = true;
template<typename T>
constexpr inline bool Detail::IsSigned<UFixedBigInt<T>> = false;
template<typename T>
struct NumericLimits<UFixedBigInt<T>> {
static constexpr UFixedBigInt<T> min() { return 0; }
static constexpr UFixedBigInt<T> max() { return { NumericLimits<T>::max(), NumericLimits<T>::max() }; }
static constexpr bool is_signed() { return false; }
};
template<typename T>
requires(sizeof(T) >= sizeof(u64) && IsUnsigned<T>) class UFixedBigInt {
public:
using R = UFixedBigInt<T>;
constexpr UFixedBigInt() = default;
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr UFixedBigInt(U low)
: m_low(low)
, m_high(0u)
{
}
template<Unsigned U, Unsigned U2>
requires(sizeof(T) >= sizeof(U) && sizeof(T) >= sizeof(U2)) constexpr UFixedBigInt(U low, U2 high)
: m_low(low)
, m_high(high)
{
}
constexpr T& low()
{
return m_low;
}
constexpr const T& low() const
{
return m_low;
}
constexpr T& high()
{
return m_high;
}
constexpr const T& high() const
{
return m_high;
}
Span<u8> bytes()
{
return Span<u8>(reinterpret_cast<u8*>(this), sizeof(R));
}
Span<const u8> bytes() const
{
return Span<const u8>(reinterpret_cast<const u8*>(this), sizeof(R));
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) explicit operator U() const
{
return static_cast<U>(m_low);
}
// Utils
constexpr size_t clz() const requires(IsSame<T, u64>)
{
if (m_high)
return __builtin_clzll(m_high);
else
return sizeof(T) * 8 + __builtin_clzll(m_low);
}
constexpr size_t clz() const requires(!IsSame<T, u64>)
{
if (m_high)
return m_high.clz();
else
return sizeof(T) * 8 + m_low.clz();
}
constexpr size_t ctz() const requires(IsSame<T, u64>)
{
if (m_low)
return __builtin_ctzll(m_low);
else
return sizeof(T) * 8 + __builtin_ctzll(m_high);
}
constexpr size_t ctz() const requires(!IsSame<T, u64>)
{
if (m_low)
return m_low.ctz();
else
return sizeof(T) * 8 + m_high.ctz();
}
constexpr size_t popcnt() const requires(IsSame<T, u64>)
{
return __builtin_popcntll(m_low) + __builtin_popcntll(m_high);
}
constexpr size_t popcnt() const requires(!IsSame<T, u64>)
{
return m_low.popcnt() + m_high.popcnt();
}
// Comparison Operations
constexpr bool operator!() const
{
return !m_low && !m_high;
}
constexpr explicit operator bool() const
{
return m_low || m_high;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator==(const T& other) const
{
return !m_high && m_low == other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator!=(const T& other) const
{
return m_high || m_low != other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator>(const T& other) const
{
return m_high || m_low > other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator<(const T& other) const
{
return !m_high && m_low < other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator>=(const T& other) const
{
return *this == other || *this > other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr bool operator<=(const T& other) const
{
return *this == other || *this < other;
}
constexpr bool operator==(const R& other) const
{
return m_low == other.low() && m_high == other.high();
}
constexpr bool operator!=(const R& other) const
{
return m_low != other.low() || m_high != other.high();
}
constexpr bool operator>(const R& other) const
{
return m_high > other.high()
|| (m_high == other.high() && m_low > other.low());
}
constexpr bool operator<(const R& other) const
{
return m_high < other.high()
|| (m_high == other.high() && m_low < other.low());
}
constexpr bool operator>=(const R& other) const
{
return *this == other || *this > other;
}
constexpr bool operator<=(const R& other) const
{
return *this == other || *this < other;
}
// Bitwise operations
constexpr R operator~() const
{
return { ~m_low, ~m_high };
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr U operator&(const U& other) const
{
return static_cast<const U>(m_low) & other;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R operator|(const U& other) const
{
return { m_low | other, m_high };
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R operator^(const U& other) const
{
return { m_low ^ other, m_high };
}
template<Unsigned U>
constexpr R operator<<(const U& shift) const
{
if (shift >= sizeof(R) * 8u)
return 0u;
if (shift >= sizeof(T) * 8u)
return R { 0u, m_low << (shift - sizeof(T) * 8u) };
if (!shift)
return *this;
T overflow = m_low >> (sizeof(T) * 8u - shift);
return R { m_low << shift, (m_high << shift) | overflow };
}
template<Unsigned U>
constexpr R operator>>(const U& shift) const
{
if (shift >= sizeof(R) * 8u)
return 0u;
if (shift >= sizeof(T) * 8u)
return m_high >> (shift - sizeof(T) * 8u);
if (!shift)
return *this;
T underflow = m_high << (sizeof(T) * 8u - shift);
return R { (m_low >> shift) | underflow, m_high >> shift };
}
template<Unsigned U>
constexpr R rol(const U& shift) const
{
return (*this >> sizeof(T) * 8u - shift) | (*this << shift);
}
template<Unsigned U>
constexpr R ror(const U& shift) const
{
return (*this << sizeof(T) * 8u - shift) | (*this >> shift);
}
constexpr R operator&(const R& other) const
{
return { m_low & other.low(), m_high & other.high() };
}
constexpr R operator|(const R& other) const
{
return { m_low | other.low(), m_high | other.high() };
}
constexpr R operator^(const R& other) const
{
return { m_low ^ other.low(), m_high ^ other.high() };
}
// Bitwise assignment
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R& operator&=(const U& other)
{
m_high = 0u;
m_low &= other;
return *this;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R& operator|=(const U& other)
{
m_low |= other;
return *this;
}
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R& operator^=(const U& other)
{
m_low ^= other;
return *this;
}
template<Unsigned U>
constexpr R& operator>>=(const U& other)
{
*this = *this >> other;
return *this;
}
template<Unsigned U>
constexpr R& operator<<=(const U& other)
{
*this = *this << other;
return *this;
}
constexpr R& operator&=(const R& other)
{
m_high &= other.high();
m_low &= other.low();
return *this;
}
constexpr R& operator|=(const R& other)
{
m_high |= other.high();
m_low |= other.low();
return *this;
}
constexpr R& operator^=(const R& other)
{
m_high ^= other.high();
m_low ^= other.low();
return *this;
}
static constexpr size_t my_size()
{
return sizeof(R);
}
// Arithmetics
// implies size of less than u64, so passing references isn't useful
template<Unsigned U>
requires(sizeof(T) >= sizeof(U) && IsSame<T, u64>) constexpr R addc(const U other, bool& carry) const
{
bool low_carry = Checked<T>::addition_would_overflow(m_low, other);
low_carry |= Checked<T>::addition_would_overflow(m_low, carry);
bool high_carry = Checked<T>::addition_would_overflow(m_high, low_carry);
T lower = m_low + other + carry;
T higher = m_high + low_carry;
carry = high_carry;
return {
lower,
higher
};
}
template<Unsigned U>
requires(my_size() > sizeof(U) && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
{
T lower = m_low.addc(other, carry);
T higher = m_high.addc(0u, carry);
return {
lower,
higher
};
}
template<Unsigned U>
requires(IsSame<R, U>&& IsSame<T, u64>) constexpr R addc(const U& other, bool& carry) const
{
bool low_carry = Checked<T>::addition_would_overflow(m_low, other.low());
bool high_carry = Checked<T>::addition_would_overflow(m_high, other.high());
T lower = m_low + other.low();
T higher = m_high + other.high();
low_carry |= Checked<T>::addition_would_overflow(lower, carry);
high_carry |= Checked<T>::addition_would_overflow(higher, low_carry);
lower += carry;
higher += low_carry;
carry = high_carry;
return {
lower,
higher
};
}
template<Unsigned U>
requires(IsSame<R, U> && sizeof(T) > sizeof(u64)) constexpr R addc(const U& other, bool& carry) const
{
T lower = m_low.addc(other.low(), carry);
T higher = m_high.addc(other.high(), carry);
return {
lower,
higher
};
}
template<Unsigned U>
requires(my_size() < sizeof(U)) constexpr U addc(const U& other, bool& carry) const
{
return other.addc(*this, carry);
}
// FIXME: subc for sizeof(T) < sizeof(U)
template<Unsigned U>
requires(sizeof(T) >= sizeof(U)) constexpr R subc(const U& other, bool& carry) const
{
bool low_carry = (!m_low && carry) || (m_low - carry) < other;
bool high_carry = !m_high && low_carry;
T lower = m_low - other - carry;
T higher = m_high - low_carry;
carry = high_carry;
return { lower, higher };
}
constexpr R subc(const R& other, bool& carry) const
{
bool low_carry = (!m_low && carry) || (m_low - carry) < other.low();
bool high_carry = (!m_high && low_carry) || (m_high - low_carry) < other.high();
T lower = m_low - other.low() - carry;
T higher = m_high - other.high() - low_carry;
carry = high_carry;
return { lower, higher };
}
constexpr R operator+(const bool& other) const
{
bool carry = false; // unused
return addc((u8)other, carry);
}
template<Unsigned U>
constexpr R operator+(const U& other) const
{
bool carry = false; // unused
return addc(other, carry);
}
constexpr R operator-(const bool& other) const
{
bool carry = false; // unused
return subc((u8)other, carry);
}
template<Unsigned U>
constexpr R operator-(const U& other) const
{
bool carry = false; // unused
return subc(other, carry);
}
template<Unsigned U>
constexpr R& operator+=(const U& other)
{
*this = *this + other;
return *this;
}
template<Unsigned U>
constexpr R& operator-=(const U& other)
{
*this = *this - other;
return *this;
}
constexpr R operator++()
{
// x++
auto old = *this;
*this += 1;
return old;
}
constexpr R& operator++(int)
{
// ++x
*this += 1;
return *this;
}
constexpr R operator--()
{
// x--
auto old = *this;
*this -= 1;
return old;
}
constexpr R& operator--(int)
{
// --x
*this -= 1;
return *this;
}
// FIXME: no restraints on this
template<Unsigned U>
requires(my_size() >= sizeof(U)) constexpr R div_mod(const U& divisor, U& remainder) const
{
// FIXME: Is there a better way to raise a division by 0?
// Maybe as a compiletime warning?
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdiv-by-zero"
if (!divisor) {
volatile int x = 1;
volatile int y = 0;
[[maybe_unused]] volatile int z = x / y;
}
#pragma GCC diagnostic pop
// fastpaths
if (*this < divisor) {
remainder = static_cast<U>(*this);
return 0u;
}
if (*this == divisor) {
remainder = 0u;
return 1u;
}
if (divisor == 1u) {
remainder = 0u;
return *this;
}
remainder = 0u;
R quotient = 0u;
for (ssize_t i = sizeof(R) * 8 - clz() - 1; i >= 0; --i) {
remainder <<= 1u;
remainder |= (*this >> (size_t)i) & 1u;
if (remainder >= divisor) {
remainder -= divisor;
quotient |= R { 1u } << (size_t)i;
}
}
return quotient;
}
template<Unsigned U>
constexpr R operator*(U other) const
{
R res = 0u;
R that = *this;
for (; other != 0u; other >>= 1u) {
if (other & 1u)
res += that;
that <<= 1u;
}
return res;
}
template<Unsigned U>
constexpr R operator/(const U& other) const
{
U mod { 0u }; // unused
return div_mod(other, mod);
}
template<Unsigned U>
constexpr U operator%(const U& other) const
{
R res { 0u };
div_mod(other, res);
return res;
}
template<Unsigned U>
constexpr R& operator*=(const U& other)
{
*this = *this * other;
return *this;
}
template<Unsigned U>
constexpr R& operator/=(const U& other)
{
*this = *this / other;
return *this;
}
template<Unsigned U>
constexpr R& operator%=(const U& other)
{
*this = *this % other;
return *this;
}
constexpr R sqrt() const
{
// Bitwise method: https://en.wikipedia.org/wiki/Integer_square_root#Using_bitwise_operations
// the bitwise method seems to be way faster then Newtons:
// https://quick-bench.com/q/eXZwW1DVhZxLE0llumeCXkfOK3Q
if (*this == 1u)
return 1u;
ssize_t shift = (sizeof(R) * 8 - clz()) & ~1ULL;
// should be equivalent to:
// long shift = 2;
// while ((val >> shift) != 0)
// shift += 2;
R res = 0u;
while (shift >= 0) {
res = res << 1u;
R large_cand = (res | 1u);
if (*this >> (size_t)shift >= large_cand * large_cand)
res = large_cand;
shift -= 2;
}
return res;
}
constexpr R pow(u64 exp)
{
// Montgomery's Ladder Technique
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
R x1 = *this;
R x2 = *this * *this;
u64 exp_copy = exp;
for (ssize_t i = sizeof(u64) * 8 - __builtin_clzll(exp) - 2; i >= 0; --i) {
if (exp_copy & 1u) {
x2 *= x1;
x1 *= x1;
} else {
x1 *= x2;
x2 *= x2;
}
exp_copy >>= 1u;
}
return x1;
}
template<Unsigned U>
requires(sizeof(U) > sizeof(u64)) constexpr R pow(U exp)
{
// Montgomery's Ladder Technique
// https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Montgomery's_ladder_technique
R x1 = *this;
R x2 = *this * *this;
U exp_copy = exp;
for (ssize_t i = sizeof(U) * 8 - exp().clz() - 2; i >= 0; --i) {
if (exp_copy & 1u) {
x2 *= x1;
x1 *= x1;
} else {
x1 *= x2;
x2 *= x2;
}
exp_copy >>= 1u;
}
return x1;
}
template<Unsigned U>
constexpr U pow_mod(u64 exp, U mod)
{
// Left to right binary method:
// https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
// FIXME: this is not sidechanel proof
if (!mod)
return 0u;
U res = 1;
u64 exp_copy = exp;
for (size_t i = sizeof(u64) - __builtin_clzll(exp) - 1u; i < exp; ++i) {
res *= res;
res %= mod;
if (exp_copy & 1u) {
res = (*this * res) % mod;
}
exp_copy >>= 1u;
}
return res;
}
template<Unsigned ExpT, Unsigned U>
requires(sizeof(ExpT) > sizeof(u64)) constexpr U pow_mod(ExpT exp, U mod)
{
// Left to right binary method:
// https://en.wikipedia.org/wiki/Modular_exponentiation#Left-to-right_binary_method
// FIXME: this is not side channel proof
if (!mod)
return 0u;
U res = 1;
ExpT exp_copy = exp;
for (size_t i = sizeof(ExpT) - exp.clz() - 1u; i < exp; ++i) {
res *= res;
res %= mod;
if (exp_copy & 1u) {
res = (*this * res) % mod;
}
exp_copy >>= 1u;
}
return res;
}
constexpr size_t log2()
{
// FIXME: propper rounding
return sizeof(R) - clz();
}
constexpr size_t logn(u64 base)
{
// FIXME: propper rounding
return log2() / (sizeof(u64) - __builtin_clzll(base));
}
template<Unsigned U>
requires(sizeof(U) > sizeof(u64)) constexpr size_t logn(U base)
{
// FIXME: propper rounding
return log2() / base.log2();
}
private:
T m_low;
T m_high;
};
// reverse operators
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<(const U a, const UFixedBigInt<T>& b) { return b >= a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>(const U a, const UFixedBigInt<T>& b) { return b <= a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator<=(const U a, const UFixedBigInt<T>& b) { return b > a; }
template<Unsigned U, Unsigned T>
requires(sizeof(U) < sizeof(T) * 2) constexpr bool operator>=(const U a, const UFixedBigInt<T>& b) { return b < a; }
template<Unsigned T>
struct Formatter<UFixedBigInt<T>> : StandardFormatter {
Formatter() = default;
explicit Formatter(StandardFormatter formatter)
: StandardFormatter(formatter)
{
}
void format(FormatBuilder& builder, UFixedBigInt<T> value)
{
if (m_precision.has_value())
VERIFY_NOT_REACHED();
if (m_mode == Mode::Pointer) {
// these are way to big for a pointer
VERIFY_NOT_REACHED();
}
if (m_mode == Mode::Default)
m_mode = Mode::Hexadecimal;
if (!value.high()) {
Formatter<T> formatter { *this };
return formatter.format(builder, value.low());
}
u8 base = 0;
if (m_mode == Mode::Binary) {
base = 2;
} else if (m_mode == Mode::BinaryUppercase) {
base = 2;
} else if (m_mode == Mode::Octal) {
TODO();
} else if (m_mode == Mode::Decimal) {
TODO();
} else if (m_mode == Mode::Hexadecimal) {
base = 16;
} else if (m_mode == Mode::HexadecimalUppercase) {
base = 16;
} else {
VERIFY_NOT_REACHED();
}
ssize_t width = m_width.value_or(0);
ssize_t lower_length = ceil_div(sizeof(T) * 8, (ssize_t)base);
Formatter<T> formatter { *this };
formatter.m_width = max(width - lower_length, (ssize_t)0);
formatter.format(builder, value.high());
builder.put_literal("'"sv);
formatter.m_zero_pad = true;
formatter.m_alternative_form = false;
formatter.m_width = lower_length;
formatter.format(builder, value.low());
}
};
}
// Nit: Doing these as custom classes might be faster, especially when writing
// then in SSE, but this would cause a lot of Code duplication and due to
// the nature of constexprs and the intelligence of the compiler they might
// be using SSE/MMX either way
// these sizes should suffice for most usecases
using u128 = AK::UFixedBigInt<u64>;
using u256 = AK::UFixedBigInt<u128>;
using u512 = AK::UFixedBigInt<u256>;
using u1024 = AK::UFixedBigInt<u512>;
using u2048 = AK::UFixedBigInt<u1024>;
using u4096 = AK::UFixedBigInt<u2048>;