serenity/Kernel/Memory/MemoryManager.h
Sönke Holz d3a0ae5c57 Kernel/MM: Replace Region::Cacheable with a more generic MemoryType enum
This replaces all usages of Cacheable::Yes with MemoryType::Normal and
Cacheable::No with either MemoryType::NonCacheable or MemoryType::IO,
depending on the context.

The Page{Directory,Table}::set_cache_disabled function therefore also
has been replaced with a more appropriate set_memory_type_function.
Adding a memory_type "getter" would not be as easy, as some
architectures may not support all memory types, so getting the memory
type again may be a lossy conversion. The is_cache_disabled function
was never used, so just simply remove it altogether.

There is no difference between MemoryType::NonCacheable and
MemoryType::IO on x86 for now.

Other architectures currently don't respect the MemoryType at all.
2024-11-23 19:29:50 +01:00

345 lines
11 KiB
C++

/*
* Copyright (c) 2018-2022, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Badge.h>
#include <AK/Concepts.h>
#include <AK/HashTable.h>
#include <AK/IntrusiveRedBlackTree.h>
#include <Kernel/Forward.h>
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/AllocationStrategy.h>
#include <Kernel/Memory/MemorySections.h>
#include <Kernel/Memory/PhysicalRAMPage.h>
#include <Kernel/Memory/PhysicalRegion.h>
#include <Kernel/Memory/Region.h>
#include <Kernel/Memory/RegionTree.h>
#include <Kernel/Memory/VMObject.h>
struct KmallocGlobalData;
namespace Kernel::Memory {
class PageDirectoryEntry;
class PageTableEntry;
ErrorOr<FlatPtr> page_round_up(FlatPtr x);
constexpr FlatPtr page_round_down(FlatPtr x)
{
return ((FlatPtr)(x)) & ~(PAGE_SIZE - 1);
}
inline FlatPtr virtual_to_low_physical(FlatPtr virtual_)
{
return virtual_ - g_boot_info.physical_to_virtual_offset;
}
enum class UsedMemoryRangeType {
LowMemory = 0,
Kernel,
BootModule,
PhysicalPages,
__Count
};
static constexpr StringView UserMemoryRangeTypeNames[] {
"Low memory"sv,
"Kernel"sv,
"Boot module"sv,
"Physical Pages"sv
};
static_assert(array_size(UserMemoryRangeTypeNames) == to_underlying(UsedMemoryRangeType::__Count));
struct UsedMemoryRange {
UsedMemoryRangeType type {};
PhysicalAddress start;
PhysicalAddress end;
};
struct ContiguousReservedMemoryRange {
PhysicalAddress start;
PhysicalSize length {};
};
enum class PhysicalMemoryRangeType {
Usable = 0,
Reserved,
ACPI_Reclaimable,
ACPI_NVS,
BadMemory,
Unknown,
};
struct PhysicalMemoryRange {
PhysicalMemoryRangeType type { PhysicalMemoryRangeType::Unknown };
PhysicalAddress start;
PhysicalSize length {};
};
#define MM Kernel::Memory::MemoryManager::the()
struct MemoryManagerData {
static ProcessorSpecificDataID processor_specific_data_id() { return ProcessorSpecificDataID::MemoryManager; }
Spinlock<LockRank::None> m_quickmap_in_use {};
InterruptsState m_quickmap_previous_interrupts_state;
};
// This class represents a set of committed physical pages.
// When you ask MemoryManager to commit pages for you, you get one of these in return.
// You can allocate pages from it via `take_one()`
// It will uncommit any (unallocated) remaining pages when destroyed.
class CommittedPhysicalPageSet {
AK_MAKE_NONCOPYABLE(CommittedPhysicalPageSet);
public:
CommittedPhysicalPageSet(Badge<MemoryManager>, size_t page_count)
: m_page_count(page_count)
{
}
CommittedPhysicalPageSet(CommittedPhysicalPageSet&& other)
: m_page_count(exchange(other.m_page_count, 0))
{
}
~CommittedPhysicalPageSet();
bool is_empty() const { return m_page_count == 0; }
size_t page_count() const { return m_page_count; }
[[nodiscard]] NonnullRefPtr<PhysicalRAMPage> take_one();
void uncommit_one();
void operator=(CommittedPhysicalPageSet&&) = delete;
private:
size_t m_page_count { 0 };
};
class MemoryManager {
friend class PageDirectory;
friend class AnonymousVMObject;
friend class Region;
friend class RegionTree;
friend class VMObject;
friend struct ::KmallocGlobalData;
public:
static MemoryManager& the();
static bool is_initialized();
static void initialize(u32 cpu);
static inline MemoryManagerData& get_data()
{
return ProcessorSpecific<MemoryManagerData>::get();
}
PageFaultResponse handle_page_fault(PageFault const&);
void set_page_writable_direct(VirtualAddress, bool);
void protect_readonly_after_init_memory();
void unmap_prekernel();
void unmap_text_after_init();
void protect_ksyms_after_init();
static void enter_process_address_space(Process&);
static void enter_address_space(AddressSpace&);
bool validate_user_stack(AddressSpace&, VirtualAddress) const;
enum class ShouldZeroFill {
No,
Yes
};
ErrorOr<CommittedPhysicalPageSet> commit_physical_pages(size_t page_count);
void uncommit_physical_pages(Badge<CommittedPhysicalPageSet>, size_t page_count);
NonnullRefPtr<PhysicalRAMPage> allocate_committed_physical_page(Badge<CommittedPhysicalPageSet>, ShouldZeroFill = ShouldZeroFill::Yes);
ErrorOr<NonnullRefPtr<PhysicalRAMPage>> allocate_physical_page(ShouldZeroFill = ShouldZeroFill::Yes, bool* did_purge = nullptr);
ErrorOr<Vector<NonnullRefPtr<PhysicalRAMPage>>> allocate_contiguous_physical_pages(size_t size);
void deallocate_physical_page(PhysicalAddress);
ErrorOr<NonnullOwnPtr<Region>> allocate_contiguous_kernel_region(size_t, StringView name, Region::Access access, MemoryType = MemoryType::Normal);
ErrorOr<NonnullOwnPtr<Region>> allocate_dma_buffer_page(StringView name, Region::Access access, RefPtr<PhysicalRAMPage>& dma_buffer_page);
ErrorOr<NonnullOwnPtr<Region>> allocate_dma_buffer_page(StringView name, Region::Access access);
ErrorOr<NonnullOwnPtr<Region>> allocate_dma_buffer_pages(size_t size, StringView name, Region::Access access, Vector<NonnullRefPtr<PhysicalRAMPage>>& dma_buffer_pages);
ErrorOr<NonnullOwnPtr<Region>> allocate_dma_buffer_pages(size_t size, StringView name, Region::Access access);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region(size_t, StringView name, Region::Access access, AllocationStrategy strategy = AllocationStrategy::Reserve, MemoryType = MemoryType::Normal);
ErrorOr<NonnullOwnPtr<Region>> allocate_mmio_kernel_region(PhysicalAddress, size_t, StringView name, Region::Access access, MemoryType = MemoryType::IO);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region_with_physical_pages(Span<NonnullRefPtr<PhysicalRAMPage>>, StringView name, Region::Access access, MemoryType = MemoryType::Normal);
ErrorOr<NonnullOwnPtr<Region>> allocate_kernel_region_with_vmobject(VMObject&, size_t, StringView name, Region::Access access, MemoryType = MemoryType::Normal);
ErrorOr<NonnullOwnPtr<Region>> allocate_unbacked_region_anywhere(size_t size, size_t alignment);
ErrorOr<NonnullOwnPtr<Region>> create_identity_mapped_region(PhysicalAddress, size_t);
struct SystemMemoryInfo {
PhysicalSize physical_pages { 0 };
PhysicalSize physical_pages_used { 0 };
PhysicalSize physical_pages_committed { 0 };
PhysicalSize physical_pages_uncommitted { 0 };
};
SystemMemoryInfo get_system_memory_info();
template<IteratorFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
VMObject::all_instances().with([&](auto& list) {
for (auto& vmobject : list) {
if (callback(vmobject) == IterationDecision::Break)
break;
}
});
}
template<VoidFunction<VMObject&> Callback>
static void for_each_vmobject(Callback callback)
{
VMObject::all_instances().with([&](auto& list) {
for (auto& vmobject : list) {
callback(vmobject);
}
});
}
static Region* find_user_region_from_vaddr(AddressSpace&, VirtualAddress);
static void validate_syscall_preconditions(Process&, RegisterState const&);
void dump_kernel_regions();
PhysicalRAMPage& shared_zero_page() { return *m_shared_zero_page; }
PhysicalRAMPage& lazy_committed_page() { return *m_lazy_committed_page; }
PageDirectory& kernel_page_directory() { return *m_kernel_page_directory; }
template<typename Callback>
void for_each_used_memory_range(Callback callback)
{
m_global_data.with([&](auto& global_data) {
for (auto& range : global_data.used_memory_ranges)
callback(range);
});
}
bool is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress, size_t read_length) const;
PhysicalPageEntry& get_physical_page_entry(PhysicalAddress);
PhysicalAddress get_physical_address(PhysicalRAMPage const&);
void copy_physical_page(PhysicalRAMPage&, u8 page_buffer[PAGE_SIZE]);
IterationDecision for_each_physical_memory_range(Function<IterationDecision(PhysicalMemoryRange const&)>);
private:
MemoryManager();
~MemoryManager();
struct GlobalData {
GlobalData();
SystemMemoryInfo system_memory_info;
Vector<NonnullOwnPtr<PhysicalRegion>> physical_regions;
OwnPtr<PhysicalRegion> physical_pages_region;
RegionTree region_tree;
Vector<UsedMemoryRange> used_memory_ranges;
Vector<PhysicalMemoryRange> physical_memory_ranges;
Vector<ContiguousReservedMemoryRange> reserved_memory_ranges;
};
void initialize_physical_pages();
void register_reserved_ranges();
#ifdef HAS_ADDRESS_SANITIZER
void initialize_kasan_shadow_memory();
#endif
void unregister_kernel_region(Region&);
void protect_kernel_image();
void parse_memory_map();
void parse_memory_map_fdt(GlobalData&, u8 const* fdt_addr);
void parse_memory_map_multiboot(GlobalData&);
static void flush_tlb_local(VirtualAddress, size_t page_count = 1);
static void flush_tlb(PageDirectory const*, VirtualAddress, size_t page_count = 1);
RefPtr<PhysicalRAMPage> find_free_physical_page(bool);
ALWAYS_INLINE u8* quickmap_page(PhysicalRAMPage& page)
{
return quickmap_page(page.paddr());
}
u8* quickmap_page(PhysicalAddress const&);
void unquickmap_page();
PageDirectoryEntry* quickmap_pd(PageDirectory&, size_t pdpt_index);
PageTableEntry* quickmap_pt(PhysicalAddress);
PageTableEntry* pte(PageDirectory&, VirtualAddress);
PageTableEntry* ensure_pte(PageDirectory&, VirtualAddress);
enum class IsLastPTERelease {
Yes,
No
};
void release_pte(PageDirectory&, VirtualAddress, IsLastPTERelease);
// NOTE: These are outside of GlobalData as they are only assigned on startup,
// and then never change. Atomic ref-counting covers that case without
// the need for additional synchronization.
LockRefPtr<PageDirectory> m_kernel_page_directory;
RefPtr<PhysicalRAMPage> m_shared_zero_page;
RefPtr<PhysicalRAMPage> m_lazy_committed_page;
// NOTE: These are outside of GlobalData as they are initialized on startup,
// and then never change.
PhysicalPageEntry* m_physical_page_entries { nullptr };
size_t m_physical_page_entries_count { 0 };
SpinlockProtected<GlobalData, LockRank::None> m_global_data;
};
inline bool PhysicalRAMPage::is_shared_zero_page() const
{
return this == &MM.shared_zero_page();
}
inline bool PhysicalRAMPage::is_lazy_committed_page() const
{
return this == &MM.lazy_committed_page();
}
inline ErrorOr<Memory::VirtualRange> expand_range_to_page_boundaries(FlatPtr address, size_t size)
{
if ((address + size) < address)
return EINVAL;
auto base = VirtualAddress { address }.page_base();
auto end = TRY(Memory::page_round_up(address + size));
return Memory::VirtualRange { base, end - base.get() };
}
inline ErrorOr<Memory::VirtualRange> shrink_range_to_page_boundaries(FlatPtr address, size_t size)
{
if ((address + size) < address)
return EINVAL;
auto base = TRY(Memory::page_round_up(address));
auto end = Memory::page_round_down(address + size);
if (end < base)
return EINVAL;
return Memory::VirtualRange { VirtualAddress(base), end - base };
}
}