serenity/Kernel/Memory/AnonymousVMObject.cpp
creator1creeper1 d1f265e851 Kernel: Make VMOBject construction OOM-aware
This commit moves the allocation of the resources required for VMObject
from its constructors to the constructors of its child classes.

We're making this change to give the child classes the chance to expose
the fallibility of the allocation.
2022-01-15 22:16:00 +02:00

371 lines
13 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <Kernel/Arch/SmapDisabler.h>
#include <Kernel/Debug.h>
#include <Kernel/Memory/AnonymousVMObject.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Memory/PhysicalPage.h>
#include <Kernel/Process.h>
namespace Kernel::Memory {
ErrorOr<NonnullRefPtr<VMObject>> AnonymousVMObject::try_clone()
{
// We need to acquire our lock so we copy a sane state
SpinlockLocker lock(m_lock);
if (is_purgeable() && is_volatile()) {
// If this object is purgeable+volatile, create a new zero-filled purgeable+volatile
// object, effectively "pre-purging" it in the child process.
auto clone = TRY(try_create_purgeable_with_size(size(), AllocationStrategy::None));
clone->m_volatile = true;
return clone;
}
// We're the parent. Since we're about to become COW we need to
// commit the number of pages that we need to potentially allocate
// so that the parent is still guaranteed to be able to have all
// non-volatile memory available.
size_t new_cow_pages_needed = page_count();
dbgln_if(COMMIT_DEBUG, "Cloning {:p}, need {} committed cow pages", this, new_cow_pages_needed);
auto committed_pages = TRY(MM.commit_user_physical_pages(new_cow_pages_needed));
// Create or replace the committed cow pages. When cloning a previously
// cloned vmobject, we want to essentially "fork", leaving us and the
// new clone with one set of shared committed cow pages, and the original
// one would keep the one it still has. This ensures that the original
// one and this one, as well as the clone have sufficient resources
// to cow all pages as needed
auto new_shared_committed_cow_pages = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) SharedCommittedCowPages(move(committed_pages))));
auto clone = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(*this, *new_shared_committed_cow_pages)));
m_shared_committed_cow_pages = move(new_shared_committed_cow_pages);
// Both original and clone become COW. So create a COW map for ourselves
// or reset all pages to be copied again if we were previously cloned
ensure_or_reset_cow_map();
if (m_unused_committed_pages.has_value() && !m_unused_committed_pages->is_empty()) {
// The parent vmobject didn't use up all committed pages. When
// cloning (fork) we will overcommit. For this purpose we drop all
// lazy-commit references and replace them with shared zero pages.
for (size_t i = 0; i < page_count(); i++) {
auto& page = clone->m_physical_pages[i];
if (page && page->is_lazy_committed_page()) {
page = MM.shared_zero_page();
}
}
}
return clone;
}
ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
}
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages)));
}
ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_physically_contiguous_with_size(size_t size)
{
auto contiguous_physical_pages = MM.allocate_contiguous_supervisor_physical_pages(size);
if (contiguous_physical_pages.is_empty())
return ENOMEM;
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(contiguous_physical_pages.span()));
}
ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_purgeable_with_size(size_t size, AllocationStrategy strategy)
{
Optional<CommittedPhysicalPageSet> committed_pages;
if (strategy == AllocationStrategy::Reserve || strategy == AllocationStrategy::AllocateNow) {
committed_pages = TRY(MM.commit_user_physical_pages(ceil_div(size, static_cast<size_t>(PAGE_SIZE))));
}
auto vmobject = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(size, strategy, move(committed_pages))));
vmobject->m_purgeable = true;
return vmobject;
}
ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_with_physical_pages(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
{
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(physical_pages));
}
ErrorOr<NonnullRefPtr<AnonymousVMObject>> AnonymousVMObject::try_create_for_physical_range(PhysicalAddress paddr, size_t size)
{
if (paddr.offset(size) < paddr) {
dbgln("Shenanigans! try_create_for_physical_range({}, {}) would wrap around", paddr, size);
// Since we can't wrap around yet, let's pretend to OOM.
return ENOMEM;
}
return adopt_nonnull_ref_or_enomem(new (nothrow) AnonymousVMObject(paddr, size));
}
AnonymousVMObject::AnonymousVMObject(size_t size, AllocationStrategy strategy, Optional<CommittedPhysicalPageSet> committed_pages)
: VMObject(VMObject::must_create_physical_pages_but_fixme_should_propagate_errors(size))
, m_unused_committed_pages(move(committed_pages))
{
if (strategy == AllocationStrategy::AllocateNow) {
// Allocate all pages right now. We know we can get all because we committed the amount needed
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = m_unused_committed_pages->take_one();
} else {
auto& initial_page = (strategy == AllocationStrategy::Reserve) ? MM.lazy_committed_page() : MM.shared_zero_page();
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = initial_page;
}
}
AnonymousVMObject::AnonymousVMObject(PhysicalAddress paddr, size_t size)
: VMObject(VMObject::must_create_physical_pages_but_fixme_should_propagate_errors(size))
{
VERIFY(paddr.page_base() == paddr);
for (size_t i = 0; i < page_count(); ++i)
physical_pages()[i] = PhysicalPage::create(paddr.offset(i * PAGE_SIZE), MayReturnToFreeList::No);
}
AnonymousVMObject::AnonymousVMObject(Span<NonnullRefPtr<PhysicalPage>> physical_pages)
: VMObject(VMObject::must_create_physical_pages_but_fixme_should_propagate_errors(physical_pages.size() * PAGE_SIZE))
{
for (size_t i = 0; i < physical_pages.size(); ++i) {
m_physical_pages[i] = physical_pages[i];
}
}
AnonymousVMObject::AnonymousVMObject(AnonymousVMObject const& other, NonnullRefPtr<SharedCommittedCowPages> shared_committed_cow_pages)
: VMObject(other.must_clone_physical_pages_but_fixme_should_propagate_errors())
, m_shared_committed_cow_pages(move(shared_committed_cow_pages))
, m_purgeable(other.m_purgeable)
{
ensure_cow_map();
}
AnonymousVMObject::~AnonymousVMObject()
{
}
size_t AnonymousVMObject::purge()
{
SpinlockLocker lock(m_lock);
if (!is_purgeable() || !is_volatile())
return 0;
size_t total_pages_purged = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
continue;
page = MM.shared_zero_page();
++total_pages_purged;
}
m_was_purged = true;
for_each_region([](Region& region) {
region.remap();
});
return total_pages_purged;
}
ErrorOr<void> AnonymousVMObject::set_volatile(bool is_volatile, bool& was_purged)
{
VERIFY(is_purgeable());
SpinlockLocker locker(m_lock);
was_purged = m_was_purged;
if (m_volatile == is_volatile)
return {};
if (is_volatile) {
// When a VMObject is made volatile, it gives up all of its committed memory.
// Any physical pages already allocated remain in the VMObject for now, but the kernel is free to take them at any moment.
for (auto& page : m_physical_pages) {
if (page && page->is_lazy_committed_page())
page = MM.shared_zero_page();
}
m_unused_committed_pages = {};
m_shared_committed_cow_pages = nullptr;
if (!m_cow_map.is_null())
m_cow_map = {};
m_volatile = true;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return {};
}
// When a VMObject is made non-volatile, we try to commit however many pages are not currently available.
// If that fails, we return false to indicate that memory allocation failed.
size_t committed_pages_needed = 0;
for (auto& page : m_physical_pages) {
VERIFY(page);
if (page->is_shared_zero_page())
++committed_pages_needed;
}
if (!committed_pages_needed) {
m_volatile = false;
return {};
}
m_unused_committed_pages = TRY(MM.commit_user_physical_pages(committed_pages_needed));
for (auto& page : m_physical_pages) {
if (page->is_shared_zero_page())
page = MM.lazy_committed_page();
}
m_volatile = false;
m_was_purged = false;
for_each_region([&](auto& region) { region.remap(); });
return {};
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::allocate_committed_page(Badge<Region>)
{
return m_unused_committed_pages->take_one();
}
Bitmap& AnonymousVMObject::ensure_cow_map()
{
if (m_cow_map.is_null())
m_cow_map = Bitmap { page_count(), true };
return m_cow_map;
}
void AnonymousVMObject::ensure_or_reset_cow_map()
{
if (m_cow_map.is_null())
ensure_cow_map();
else
m_cow_map.fill(true);
}
bool AnonymousVMObject::should_cow(size_t page_index, bool is_shared) const
{
auto const& page = physical_pages()[page_index];
if (page && (page->is_shared_zero_page() || page->is_lazy_committed_page()))
return true;
if (is_shared)
return false;
return !m_cow_map.is_null() && m_cow_map.get(page_index);
}
void AnonymousVMObject::set_should_cow(size_t page_index, bool cow)
{
ensure_cow_map().set(page_index, cow);
}
size_t AnonymousVMObject::cow_pages() const
{
if (m_cow_map.is_null())
return 0;
return m_cow_map.count_slow(true);
}
PageFaultResponse AnonymousVMObject::handle_cow_fault(size_t page_index, VirtualAddress vaddr)
{
VERIFY_INTERRUPTS_DISABLED();
SpinlockLocker lock(m_lock);
if (is_volatile()) {
// A COW fault in a volatile region? Userspace is writing to volatile memory, this is a bug. Crash.
dbgln("COW fault in volatile region, will crash.");
return PageFaultResponse::ShouldCrash;
}
auto& page_slot = physical_pages()[page_index];
// If we were sharing committed COW pages with another process, and the other process
// has exhausted the supply, we can stop counting the shared pages.
if (m_shared_committed_cow_pages && m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
if (page_slot->ref_count() == 1) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page but nobody is sharing it anymore. Remap r/w");
set_should_cow(page_index, false);
if (m_shared_committed_cow_pages) {
m_shared_committed_cow_pages->uncommit_one();
if (m_shared_committed_cow_pages->is_empty())
m_shared_committed_cow_pages = nullptr;
}
return PageFaultResponse::Continue;
}
RefPtr<PhysicalPage> page;
if (m_shared_committed_cow_pages) {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a committed COW page and it's time to COW!");
page = m_shared_committed_cow_pages->take_one();
} else {
dbgln_if(PAGE_FAULT_DEBUG, " >> It's a COW page and it's time to COW!");
page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (page.is_null()) {
dmesgln("MM: handle_cow_fault was unable to allocate a physical page");
return PageFaultResponse::OutOfMemory;
}
}
dbgln_if(PAGE_FAULT_DEBUG, " >> COW {} <- {}", page->paddr(), page_slot->paddr());
{
SpinlockLocker mm_locker(s_mm_lock);
u8* dest_ptr = MM.quickmap_page(*page);
SmapDisabler disabler;
void* fault_at;
if (!safe_memcpy(dest_ptr, vaddr.as_ptr(), PAGE_SIZE, fault_at)) {
if ((u8*)fault_at >= dest_ptr && (u8*)fault_at <= dest_ptr + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to write to page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else if ((u8*)fault_at >= vaddr.as_ptr() && (u8*)fault_at <= vaddr.as_ptr() + PAGE_SIZE)
dbgln(" >> COW: error copying page {}/{} to {}/{}: failed to read from page at {}",
page_slot->paddr(), vaddr, page->paddr(), VirtualAddress(dest_ptr), VirtualAddress(fault_at));
else
VERIFY_NOT_REACHED();
}
MM.unquickmap_page();
}
page_slot = move(page);
set_should_cow(page_index, false);
return PageFaultResponse::Continue;
}
AnonymousVMObject::SharedCommittedCowPages::SharedCommittedCowPages(CommittedPhysicalPageSet&& committed_pages)
: m_committed_pages(move(committed_pages))
{
}
AnonymousVMObject::SharedCommittedCowPages::~SharedCommittedCowPages()
{
}
NonnullRefPtr<PhysicalPage> AnonymousVMObject::SharedCommittedCowPages::take_one()
{
SpinlockLocker locker(m_lock);
return m_committed_pages.take_one();
}
void AnonymousVMObject::SharedCommittedCowPages::uncommit_one()
{
SpinlockLocker locker(m_lock);
m_committed_pages.uncommit_one();
}
}