serenity/Userland/Libraries/LibGfx/Rect.h

698 lines
21 KiB
C++

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Format.h>
#include <LibGfx/AffineTransform.h>
#include <LibGfx/Orientation.h>
#include <LibGfx/Point.h>
#include <LibGfx/Size.h>
#include <LibGfx/TextAlignment.h>
#include <math.h>
namespace Gfx {
template<typename T>
T abst(T value)
{
return value < 0 ? -value : value;
}
template<typename T>
class Rect {
public:
Rect() = default;
Rect(T x, T y, T width, T height)
: m_location(x, y)
, m_size(width, height)
{
}
template<typename U>
Rect(U x, U y, U width, U height)
: m_location(x, y)
, m_size(width, height)
{
}
Rect(Point<T> const& location, Size<T> const& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
Rect(Point<U> const& location, Size<U> const& size)
: m_location(location)
, m_size(size)
{
}
template<typename U>
explicit Rect(Rect<U> const& other)
: m_location(other.location())
, m_size(other.size())
{
}
[[nodiscard]] ALWAYS_INLINE T x() const { return location().x(); }
[[nodiscard]] ALWAYS_INLINE T y() const { return location().y(); }
[[nodiscard]] ALWAYS_INLINE T width() const { return m_size.width(); }
[[nodiscard]] ALWAYS_INLINE T height() const { return m_size.height(); }
ALWAYS_INLINE void set_x(T x) { m_location.set_x(x); }
ALWAYS_INLINE void set_y(T y) { m_location.set_y(y); }
ALWAYS_INLINE void set_width(T width) { m_size.set_width(width); }
ALWAYS_INLINE void set_height(T height) { m_size.set_height(height); }
[[nodiscard]] ALWAYS_INLINE Point<T> const& location() const { return m_location; }
[[nodiscard]] ALWAYS_INLINE Size<T> const& size() const { return m_size; }
[[nodiscard]] ALWAYS_INLINE bool is_null() const { return width() == 0 && height() == 0; }
[[nodiscard]] ALWAYS_INLINE bool is_empty() const { return width() <= 0 || height() <= 0; }
ALWAYS_INLINE void translate_by(T dx, T dy) { m_location.translate_by(dx, dy); }
ALWAYS_INLINE void translate_by(T dboth) { m_location.translate_by(dboth); }
ALWAYS_INLINE void translate_by(Point<T> const& delta) { m_location.translate_by(delta); }
ALWAYS_INLINE void scale_by(T dx, T dy)
{
m_location.scale_by(dx, dy);
m_size.scale_by(dx, dy);
}
ALWAYS_INLINE void scale_by(T dboth) { scale_by(dboth, dboth); }
ALWAYS_INLINE void scale_by(Point<T> const& delta) { scale_by(delta.x(), delta.y()); }
void transform_by(AffineTransform const& transform) { *this = transform.map(*this); }
[[nodiscard]] Point<T> center() const
{
return { x() + width() / 2, y() + height() / 2 };
}
ALWAYS_INLINE void set_location(Point<T> const& location)
{
m_location = location;
}
ALWAYS_INLINE void set_size(Size<T> const& size)
{
m_size = size;
}
void set_size_around(Size<T> const&, Point<T> const& fixed_point);
void set_size(T width, T height)
{
m_size.set_width(width);
m_size.set_height(height);
}
void inflate(T w, T h)
{
set_x(x() - w / 2);
set_width(width() + w);
set_y(y() - h / 2);
set_height(height() + h);
}
void inflate(Size<T> const& size)
{
set_x(x() - size.width() / 2);
set_width(width() + size.width());
set_y(y() - size.height() / 2);
set_height(height() + size.height());
}
void shrink(T w, T h)
{
set_x(x() + w / 2);
set_width(width() - w);
set_y(y() + h / 2);
set_height(height() - h);
}
void shrink(Size<T> const& size)
{
set_x(x() + size.width() / 2);
set_width(width() - size.width());
set_y(y() + size.height() / 2);
set_height(height() - size.height());
}
[[nodiscard]] Rect<T> translated(T dx, T dy) const
{
Rect<T> rect = *this;
rect.translate_by(dx, dy);
return rect;
}
[[nodiscard]] Rect<T> translated(Point<T> const& delta) const
{
Rect<T> rect = *this;
rect.translate_by(delta);
return rect;
}
[[nodiscard]] Rect<T> scaled(T sx, T sy) const
{
Rect<T> rect = *this;
rect.scale_by(sx, sy);
return rect;
}
[[nodiscard]] Rect<T> scaled(Point<T> const& s) const
{
Rect<T> rect = *this;
rect.scale_by(s);
return rect;
}
[[nodiscard]] Rect<T> transformed(AffineTransform const& transform) const
{
Rect<T> rect = *this;
rect.transform_by(transform);
return rect;
}
[[nodiscard]] Rect<T> shrunken(T w, T h) const
{
Rect<T> rect = *this;
rect.shrink(w, h);
return rect;
}
[[nodiscard]] Rect<T> shrunken(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.shrink(size);
return rect;
}
[[nodiscard]] Rect<T> inflated(T w, T h) const
{
Rect<T> rect = *this;
rect.inflate(w, h);
return rect;
}
[[nodiscard]] Rect<T> inflated(Size<T> const& size) const
{
Rect<T> rect = *this;
rect.inflate(size);
return rect;
}
Rect<T> take_from_right(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_width(width() - w);
rect.set_x(x() + width());
rect.set_width(w);
return rect;
}
Rect<T> take_from_left(T w)
{
if (w > width())
w = width();
Rect<T> rect = *this;
set_x(x() + w);
set_width(width() - w);
rect.set_width(w);
return rect;
}
Rect<T> take_from_top(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_y(y() + h);
set_height(height() - h);
rect.set_height(h);
return rect;
}
Rect<T> take_from_bottom(T h)
{
if (h > height())
h = height();
Rect<T> rect = *this;
set_height(height() - h);
rect.set_y(y() + height());
rect.set_height(h);
return rect;
}
[[nodiscard]] bool contains_vertically(T y) const
{
return y >= top() && y <= bottom();
}
[[nodiscard]] bool contains_horizontally(T x) const
{
return x >= left() && x <= right();
}
[[nodiscard]] bool contains(T x, T y) const
{
return x >= m_location.x() && x <= right() && y >= m_location.y() && y <= bottom();
}
[[nodiscard]] ALWAYS_INLINE bool contains(Point<T> const& point) const
{
return contains(point.x(), point.y());
}
[[nodiscard]] bool contains(Rect<T> const& other) const
{
return left() <= other.left()
&& right() >= other.right()
&& top() <= other.top()
&& bottom() >= other.bottom();
}
template<typename Container>
[[nodiscard]] bool contains(Container const& others) const
{
bool have_any = false;
for (auto const& other : others) {
if (!contains(other))
return false;
have_any = true;
}
return have_any;
}
[[nodiscard]] ALWAYS_INLINE int primary_offset_for_orientation(Orientation orientation) const { return m_location.primary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_offset_for_orientation(Orientation orientation, int value) { m_location.set_primary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE int secondary_offset_for_orientation(Orientation orientation) const { return m_location.secondary_offset_for_orientation(orientation); }
ALWAYS_INLINE void set_secondary_offset_for_orientation(Orientation orientation, int value) { m_location.set_secondary_offset_for_orientation(orientation, value); }
[[nodiscard]] ALWAYS_INLINE int primary_size_for_orientation(Orientation orientation) const { return m_size.primary_size_for_orientation(orientation); }
[[nodiscard]] ALWAYS_INLINE int secondary_size_for_orientation(Orientation orientation) const { return m_size.secondary_size_for_orientation(orientation); }
ALWAYS_INLINE void set_primary_size_for_orientation(Orientation orientation, int value) { m_size.set_primary_size_for_orientation(orientation, value); }
ALWAYS_INLINE void set_secondary_size_for_orientation(Orientation orientation, int value) { m_size.set_secondary_size_for_orientation(orientation, value); }
[[nodiscard]] T first_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return top();
return left();
}
[[nodiscard]] T last_edge_for_orientation(Orientation orientation) const
{
if (orientation == Orientation::Vertical)
return bottom();
return right();
}
[[nodiscard]] ALWAYS_INLINE T left() const { return x(); }
[[nodiscard]] ALWAYS_INLINE T right() const { return x() + width() - 1; }
[[nodiscard]] ALWAYS_INLINE T top() const { return y(); }
[[nodiscard]] ALWAYS_INLINE T bottom() const { return y() + height() - 1; }
ALWAYS_INLINE void set_left(T left)
{
set_x(left);
}
ALWAYS_INLINE void set_top(T top)
{
set_y(top);
}
ALWAYS_INLINE void set_right(T right)
{
set_width(right - x() + 1);
}
ALWAYS_INLINE void set_bottom(T bottom)
{
set_height(bottom - y() + 1);
}
void set_right_without_resize(T new_right)
{
int delta = new_right - right();
translate_by(delta, 0);
}
void set_bottom_without_resize(T new_bottom)
{
int delta = new_bottom - bottom();
translate_by(0, delta);
}
[[nodiscard]] bool intersects_vertically(Rect<T> const& other) const
{
return top() <= other.bottom() && other.top() <= bottom();
}
[[nodiscard]] bool intersects_horizontally(Rect<T> const& other) const
{
return left() <= other.right() && other.left() <= right();
}
[[nodiscard]] bool intersects(Rect<T> const& other) const
{
return left() <= other.right()
&& other.left() <= right()
&& top() <= other.bottom()
&& other.top() <= bottom();
}
template<typename Container>
[[nodiscard]] bool intersects(Container const& others) const
{
for (auto const& other : others) {
if (intersects(other))
return true;
}
return false;
}
template<typename Container, typename Function>
IterationDecision for_each_intersected(Container const& others, Function f) const
{
if (is_empty())
return IterationDecision::Continue;
for (auto const& other : others) {
auto intersected_rect = intersected(other);
if (!intersected_rect.is_empty()) {
IterationDecision decision = f(intersected_rect);
if (decision != IterationDecision::Continue)
return decision;
}
}
return IterationDecision::Continue;
}
[[nodiscard]] Vector<Rect<T>, 4> shatter(Rect<T> const& hammer) const;
template<class U>
[[nodiscard]] bool operator==(Rect<U> const& other) const
{
return location() == other.location() && size() == other.size();
}
template<class U>
[[nodiscard]] bool operator!=(Rect<U> const& other) const
{
return !(*this == other);
}
[[nodiscard]] Rect<T> operator*(T factor) const { return { m_location * factor, m_size * factor }; }
Rect<T>& operator*=(T factor)
{
m_location *= factor;
m_size *= factor;
return *this;
}
void intersect(Rect<T> const&);
[[nodiscard]] static Rect<T> centered_on(Point<T> const& center, Size<T> const& size)
{
return { { center.x() - size.width() / 2, center.y() - size.height() / 2 }, size };
}
[[nodiscard]] static Rect<T> from_two_points(Point<T> const& a, Point<T> const& b)
{
return { min(a.x(), b.x()), min(a.y(), b.y()), abst(a.x() - b.x()), abst(a.y() - b.y()) };
}
[[nodiscard]] static Rect<T> intersection(Rect<T> const& a, Rect<T> const& b)
{
Rect<T> r = a;
r.intersect(b);
return r;
}
[[nodiscard]] ALWAYS_INLINE Rect<T> intersected(Rect<T> const& other) const
{
return intersection(*this, other);
}
[[nodiscard]] Vector<Point<T>, 2> intersected(Line<T> const&) const;
[[nodiscard]] float center_point_distance_to(Rect<T> const&) const;
[[nodiscard]] Vector<Point<T>, 2> closest_outside_center_points(Rect<T> const&) const;
[[nodiscard]] float outside_center_point_distance_to(Rect<T> const&) const;
[[nodiscard]] Rect<T> constrained_to(Rect<T> const&) const;
[[nodiscard]] Rect<T> aligned_within(Size<T> const&, Point<T> const&, TextAlignment = TextAlignment::Center) const;
[[nodiscard]] Point<T> closest_to(Point<T> const&) const;
class RelativeLocation {
friend class Rect<T>;
RelativeLocation(Rect<T> const& base_rect, Rect<T> const& other_rect);
public:
RelativeLocation() = default;
bool top_left() const { return m_top_left; }
bool top() const { return m_top; }
bool top_right() const { return m_top_right; }
bool left() const { return m_left; }
bool right() const { return m_right; }
bool bottom_left() const { return m_bottom_left; }
bool bottom() const { return m_bottom; }
bool bottom_right() const { return m_bottom_right; }
bool anywhere_above() const { return m_top_left || m_top || m_top_right; }
bool anywhere_below() const { return m_bottom_left || m_bottom || m_bottom_right; }
bool anywhere_left() const { return m_top_left || m_left || m_bottom_left; }
bool anywhere_right() const { return m_top_right || m_right || m_bottom_right; }
private:
bool m_top_left : 1 { false };
bool m_top : 1 { false };
bool m_top_right : 1 { false };
bool m_left : 1 { false };
bool m_right : 1 { false };
bool m_bottom_left : 1 { false };
bool m_bottom : 1 { false };
bool m_bottom_right : 1 { false };
};
[[nodiscard]] RelativeLocation relative_location_to(Rect<T> const& other) const
{
return RelativeLocation(*this, other);
}
enum class Side {
None = 0,
Left,
Top,
Right,
Bottom
};
[[nodiscard]] Side side(Point<T> const& point) const
{
if (is_empty())
return Side::None;
if (point.y() == y() || point.y() == bottom())
return (point.x() >= x() && point.x() <= right()) ? (point.y() == y() ? Side::Top : Side::Bottom) : Side::None;
if (point.x() == x() || point.x() == right())
return (point.y() > y() && point.y() < bottom()) ? (point.x() == x() ? Side::Left : Side::Right) : Side::None;
return Side::None;
}
[[nodiscard]] Rect<T> rect_on_side(Side side, Rect<T> const& other) const
{
switch (side) {
case Side::None:
break;
case Side::Left:
// Return the area in other that is to the left of this rect
if (other.x() < x()) {
if (other.right() >= x())
return { other.location(), { x() - other.x(), other.height() } };
else
return other;
}
break;
case Side::Top:
// Return the area in other that is above this rect
if (other.y() < y()) {
if (other.bottom() >= y())
return { other.location(), { other.width(), y() - other.y() } };
else
return other;
}
break;
case Side::Right:
// Return the area in other that is to the right of this rect
if (other.right() >= x()) {
if (other.x() <= right())
return { { right() + 1, other.y() }, { other.width() - (right() - other.x()), other.height() } };
else
return other;
}
break;
case Side::Bottom:
// Return the area in other that is below this rect
if (other.bottom() >= y()) {
if (other.y() <= bottom())
return { { other.x(), bottom() + 1 }, { other.width(), other.height() - (bottom() - other.y()) } };
else
return other;
}
break;
}
return {};
}
template<typename Container>
static bool disperse(Container& rects)
{
auto has_intersecting = [&]() {
for (auto& rect : rects) {
for (auto& other_rect : rects) {
if (&rect == &other_rect)
continue;
if (rect.intersects(other_rect))
return true;
}
}
return false;
};
if (!has_intersecting())
return false;
auto calc_delta = [&](Rect<T> const& rect) -> Point<T> {
auto rect_center = rect.center();
Point<T> center_sum;
for (auto& other_rect : rects) {
if (&other_rect == &rect)
continue;
if (rect.intersects(other_rect))
center_sum += rect_center - other_rect.center();
}
double m = sqrt((double)center_sum.x() * (double)center_sum.x() + (double)center_sum.y() * (double)center_sum.y());
if (m != 0.0)
return { (double)center_sum.x() / m + 0.5, (double)center_sum.y() / m + 0.5 };
return {};
};
Vector<Point<T>, 8> deltas;
do {
bool changes = false;
deltas.clear_with_capacity();
for (auto& rect : rects) {
auto delta = calc_delta(rect);
if (!delta.is_null())
changes = true;
deltas.append(delta);
}
// TODO: If we have no changes we would loop infinitely!
// Figure out some way to resolve this. Maybe randomly moving an intersecting rect?
VERIFY(changes);
size_t i = 0;
for (auto& rect : rects)
rect.translate_by(deltas[i++]);
} while (has_intersecting());
return true;
}
[[nodiscard]] bool is_adjacent(Rect<T> const& other) const
{
if (is_empty() || other.is_empty())
return false;
if (intersects(other))
return false;
if (other.x() + other.width() == x() || other.x() == x() + width())
return max(top(), other.top()) <= min(bottom(), other.bottom());
if (other.y() + other.height() == y() || other.y() == y() + height())
return max(left(), other.left()) <= min(right(), other.right());
return false;
}
[[nodiscard]] static Rect<T> centered_at(Point<T> const& point, Size<T> const& size)
{
return { { point.x() - size.width() / 2, point.y() - size.height() / 2 }, size };
}
[[nodiscard]] Rect<T> united(Rect<T> const&) const;
[[nodiscard]] Point<T> top_left() const { return { left(), top() }; }
[[nodiscard]] Point<T> top_right() const { return { right(), top() }; }
[[nodiscard]] Point<T> bottom_left() const { return { left(), bottom() }; }
[[nodiscard]] Point<T> bottom_right() const { return { right(), bottom() }; }
void align_within(Rect<T> const&, TextAlignment);
void center_within(Rect<T> const& other)
{
center_horizontally_within(other);
center_vertically_within(other);
}
void center_horizontally_within(Rect<T> const& other)
{
set_x(other.center().x() - width() / 2);
}
void center_vertically_within(Rect<T> const& other)
{
set_y(other.center().y() - height() / 2);
}
template<typename U>
[[nodiscard]] ALWAYS_INLINE Rect<U> to_type() const
{
return Rect<U>(*this);
}
[[nodiscard]] String to_string() const;
private:
Point<T> m_location;
Size<T> m_size;
};
using IntRect = Rect<int>;
using FloatRect = Rect<float>;
[[nodiscard]] ALWAYS_INLINE IntRect enclosing_int_rect(FloatRect const& float_rect)
{
int x1 = floorf(float_rect.x());
int y1 = floorf(float_rect.y());
int x2 = ceilf(float_rect.x() + float_rect.width());
int y2 = ceilf(float_rect.y() + float_rect.height());
return Gfx::IntRect::from_two_points({ x1, y1 }, { x2, y2 });
}
}
namespace AK {
template<typename T>
struct Formatter<Gfx::Rect<T>> : Formatter<StringView> {
void format(FormatBuilder& builder, const Gfx::Rect<T>& value)
{
Formatter<StringView>::format(builder, value.to_string());
}
};
}
namespace IPC {
bool decode(Decoder&, Gfx::IntRect&);
bool encode(Encoder&, const Gfx::IntRect&);
}