serenity/Kernel/Storage/StorageManagement.cpp

452 lines
17 KiB
C++

/*
* Copyright (c) 2020-2022, Liav A. <liavalb@hotmail.co.il>
* Copyright (c) 2022, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/IterationDecision.h>
#include <AK/Platform.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <AK/UUID.h>
#if ARCH(I386) || ARCH(X86_64)
# include <Kernel/Arch/x86/ISABus/IDEController.h>
# include <Kernel/Arch/x86/PCI/IDELegacyModeController.h>
#endif
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Bus/PCI/Access.h>
#include <Kernel/Bus/PCI/Controller/VolumeManagementDevice.h>
#include <Kernel/CommandLine.h>
#include <Kernel/Devices/BlockDevice.h>
#include <Kernel/Devices/DeviceManagement.h>
#include <Kernel/FileSystem/Ext2FS/FileSystem.h>
#include <Kernel/FileSystem/VirtualFileSystem.h>
#include <Kernel/Panic.h>
#include <Kernel/Storage/ATA/AHCI/Controller.h>
#include <Kernel/Storage/ATA/GenericIDE/Controller.h>
#include <Kernel/Storage/NVMe/NVMeController.h>
#include <Kernel/Storage/StorageManagement.h>
#include <LibPartition/EBRPartitionTable.h>
#include <LibPartition/GUIDPartitionTable.h>
#include <LibPartition/MBRPartitionTable.h>
namespace Kernel {
static Singleton<StorageManagement> s_the;
static Atomic<u32> s_storage_device_minor_number;
static Atomic<u32> s_partition_device_minor_number;
static Atomic<u32> s_controller_id;
static Atomic<u32> s_relative_ata_controller_id;
static Atomic<u32> s_relative_nvme_controller_id;
static constexpr StringView partition_uuid_prefix = "PARTUUID:"sv;
static constexpr StringView partition_number_prefix = "part"sv;
static constexpr StringView block_device_prefix = "block"sv;
static constexpr StringView ata_device_prefix = "ata"sv;
static constexpr StringView nvme_device_prefix = "nvme"sv;
static constexpr StringView logical_unit_number_device_prefix = "lun"sv;
UNMAP_AFTER_INIT StorageManagement::StorageManagement()
{
}
u32 StorageManagement::generate_relative_nvme_controller_id(Badge<NVMeController>)
{
auto controller_id = s_relative_nvme_controller_id.load();
s_relative_nvme_controller_id++;
return controller_id;
}
u32 StorageManagement::generate_relative_ata_controller_id(Badge<ATAController>)
{
auto controller_id = s_relative_ata_controller_id.load();
s_relative_ata_controller_id++;
return controller_id;
}
void StorageManagement::remove_device(StorageDevice& device)
{
m_storage_devices.remove(device);
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_pci_controllers(bool force_pio, bool nvme_poll)
{
VERIFY(m_controllers.is_empty());
using SubclassID = PCI::MassStorage::SubclassID;
if (!kernel_command_line().disable_physical_storage()) {
MUST(PCI::enumerate([&](PCI::DeviceIdentifier const& device_identifier) -> void {
if (device_identifier.class_code().value() != to_underlying(PCI::ClassID::MassStorage)) {
return;
}
{
constexpr PCI::HardwareID vmd_device = { 0x8086, 0x9a0b };
if (device_identifier.hardware_id() == vmd_device) {
auto controller = PCI::VolumeManagementDevice::must_create(device_identifier);
MUST(PCI::Access::the().add_host_controller_and_enumerate_attached_devices(move(controller), [this, nvme_poll](PCI::DeviceIdentifier const& device_identifier) -> void {
auto subclass_code = static_cast<SubclassID>(device_identifier.subclass_code().value());
if (subclass_code == SubclassID::NVMeController) {
auto controller = NVMeController::try_initialize(device_identifier, nvme_poll);
if (controller.is_error()) {
dmesgln("Unable to initialize NVMe controller: {}", controller.error());
} else {
m_controllers.append(controller.release_value());
}
}
}));
}
}
auto subclass_code = static_cast<SubclassID>(device_identifier.subclass_code().value());
#if ARCH(I386) || ARCH(X86_64)
if (subclass_code == SubclassID::IDEController && kernel_command_line().is_ide_enabled()) {
m_controllers.append(PCIIDELegacyModeController::initialize(device_identifier, force_pio));
}
#elif ARCH(AARCH64)
(void)force_pio;
TODO_AARCH64();
#else
# error Unknown architecture
#endif
if (subclass_code == SubclassID::SATAController
&& device_identifier.prog_if().value() == to_underlying(PCI::MassStorage::SATAProgIF::AHCI)) {
m_controllers.append(AHCIController::initialize(device_identifier));
}
if (subclass_code == SubclassID::NVMeController) {
auto controller = NVMeController::try_initialize(device_identifier, nvme_poll);
if (controller.is_error()) {
dmesgln("Unable to initialize NVMe controller: {}", controller.error());
} else {
m_controllers.append(controller.release_value());
}
}
}));
}
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_storage_devices()
{
VERIFY(!m_controllers.is_empty());
for (auto& controller : m_controllers) {
for (size_t device_index = 0; device_index < controller.devices_count(); device_index++) {
auto device = controller.device(device_index);
if (device.is_null())
continue;
m_storage_devices.append(device.release_nonnull());
}
}
}
UNMAP_AFTER_INIT void StorageManagement::dump_storage_devices_and_partitions() const
{
dbgln("StorageManagement: Detected {} storage devices", m_storage_devices.size_slow());
for (auto const& storage_device : m_storage_devices) {
auto const& partitions = storage_device.partitions();
if (partitions.is_empty()) {
dbgln(" Device: block{}:{} (no partitions)", storage_device.major(), storage_device.minor());
} else {
dbgln(" Device: block{}:{} ({} partitions)", storage_device.major(), storage_device.minor(), partitions.size());
unsigned partition_number = 1;
for (auto const& partition : partitions) {
dbgln(" Partition: {}, block{}:{} (UUID {})", partition_number, partition.major(), partition.minor(), partition.metadata().unique_guid().to_string());
partition_number++;
}
}
}
}
UNMAP_AFTER_INIT ErrorOr<NonnullOwnPtr<Partition::PartitionTable>> StorageManagement::try_to_initialize_partition_table(StorageDevice const& device) const
{
auto mbr_table_or_error = Partition::MBRPartitionTable::try_to_initialize(device);
if (!mbr_table_or_error.is_error())
return mbr_table_or_error.release_value();
auto ebr_table_or_error = Partition::EBRPartitionTable::try_to_initialize(device);
if (!ebr_table_or_error.is_error()) {
return ebr_table_or_error.release_value();
}
return TRY(Partition::GUIDPartitionTable::try_to_initialize(device));
}
UNMAP_AFTER_INIT void StorageManagement::enumerate_disk_partitions()
{
VERIFY(!m_storage_devices.is_empty());
for (auto& device : m_storage_devices) {
auto partition_table_or_error = try_to_initialize_partition_table(device);
if (partition_table_or_error.is_error())
continue;
auto partition_table = partition_table_or_error.release_value();
for (size_t partition_index = 0; partition_index < partition_table->partitions_count(); partition_index++) {
auto partition_metadata = partition_table->partition(partition_index);
if (!partition_metadata.has_value())
continue;
auto disk_partition = DiskPartition::create(device, generate_partition_minor_number(), partition_metadata.value());
device.add_partition(disk_partition);
}
}
}
UNMAP_AFTER_INIT Optional<unsigned> StorageManagement::extract_boot_device_partition_number_parameter(StringView device_prefix)
{
VERIFY(m_boot_argument.starts_with(device_prefix));
VERIFY(!m_boot_argument.starts_with(partition_uuid_prefix));
auto storage_device_relative_address_view = m_boot_argument.substring_view(device_prefix.length());
auto parameter_view = storage_device_relative_address_view.find_last_split_view(';');
if (parameter_view == storage_device_relative_address_view)
return {};
if (!parameter_view.starts_with(partition_number_prefix)) {
PANIC("StorageManagement: Invalid root boot parameter.");
}
auto parameter_number = parameter_view.substring_view(partition_number_prefix.length()).to_uint<unsigned>();
if (!parameter_number.has_value()) {
PANIC("StorageManagement: Invalid root boot parameter.");
}
return parameter_number.value();
}
UNMAP_AFTER_INIT Array<unsigned, 3> StorageManagement::extract_boot_device_address_parameters(StringView device_prefix)
{
VERIFY(!m_boot_argument.starts_with(partition_uuid_prefix));
Array<unsigned, 3> address_parameters;
auto parameters_view = m_boot_argument.substring_view(device_prefix.length()).find_first_split_view(';');
size_t parts_count = 0;
bool parse_failure = false;
parameters_view.for_each_split_view(':', SplitBehavior::Nothing, [&](StringView parameter_view) {
if (parse_failure)
return;
if (parts_count > 2)
return;
auto parameter_number = parameter_view.to_uint<unsigned>();
if (!parameter_number.has_value()) {
parse_failure = true;
return;
}
address_parameters[parts_count] = parameter_number.value();
parts_count++;
});
if (parts_count > 3) {
dbgln("StorageManagement: Detected {} parts in boot device parameter.", parts_count);
PANIC("StorageManagement: Invalid root boot parameter.");
}
if (parse_failure) {
PANIC("StorageManagement: Invalid root boot parameter.");
}
return address_parameters;
}
UNMAP_AFTER_INIT void StorageManagement::resolve_partition_from_boot_device_parameter(StorageDevice const& chosen_storage_device, StringView boot_device_prefix)
{
auto possible_partition_number = extract_boot_device_partition_number_parameter(boot_device_prefix);
if (!possible_partition_number.has_value())
return;
auto partition_number = possible_partition_number.value();
if (chosen_storage_device.partitions().size() <= partition_number)
PANIC("StorageManagement: Invalid partition number parameter.");
m_boot_block_device = chosen_storage_device.partitions()[partition_number];
}
UNMAP_AFTER_INIT void StorageManagement::determine_hardware_relative_boot_device(StringView relative_hardware_prefix, Function<bool(StorageDevice const&)> filter_device_callback)
{
VERIFY(m_boot_argument.starts_with(relative_hardware_prefix));
auto address_parameters = extract_boot_device_address_parameters(relative_hardware_prefix);
RefPtr<StorageDevice> chosen_storage_device;
for (auto& storage_device : m_storage_devices) {
if (!filter_device_callback(storage_device))
continue;
auto storage_device_lun = storage_device.logical_unit_number_address();
if (storage_device.parent_controller_hardware_relative_id() == address_parameters[0]
&& storage_device_lun.target_id == address_parameters[1]
&& storage_device_lun.disk_id == address_parameters[2]) {
m_boot_block_device = storage_device;
chosen_storage_device = storage_device;
break;
}
}
if (chosen_storage_device)
resolve_partition_from_boot_device_parameter(*chosen_storage_device, relative_hardware_prefix);
}
UNMAP_AFTER_INIT void StorageManagement::determine_ata_boot_device()
{
determine_hardware_relative_boot_device(ata_device_prefix, [](StorageDevice const& device) -> bool {
return device.command_set() == StorageDevice::CommandSet::ATA;
});
}
UNMAP_AFTER_INIT void StorageManagement::determine_nvme_boot_device()
{
determine_hardware_relative_boot_device(nvme_device_prefix, [](StorageDevice const& device) -> bool {
return device.command_set() == StorageDevice::CommandSet::NVMe;
});
}
UNMAP_AFTER_INIT void StorageManagement::determine_block_boot_device()
{
VERIFY(m_boot_argument.starts_with(block_device_prefix));
auto parameters_view = extract_boot_device_address_parameters(block_device_prefix);
// Note: We simply fetch the corresponding BlockDevice with the major and minor parameters.
// We don't try to accept and resolve a partition number as it will make this code much more
// complicated. This rule is also explained in the boot_device_addressing(7) manual page.
LockRefPtr<Device> device = DeviceManagement::the().get_device(parameters_view[0], parameters_view[1]);
if (device && device->is_block_device())
m_boot_block_device = static_ptr_cast<BlockDevice>(device);
}
UNMAP_AFTER_INIT void StorageManagement::determine_boot_device_with_logical_unit_number()
{
VERIFY(m_boot_argument.starts_with(logical_unit_number_device_prefix));
auto address_parameters = extract_boot_device_address_parameters(logical_unit_number_device_prefix);
RefPtr<StorageDevice> chosen_storage_device;
for (auto& storage_device : m_storage_devices) {
auto storage_device_lun = storage_device.logical_unit_number_address();
if (storage_device_lun.controller_id == address_parameters[0]
&& storage_device_lun.target_id == address_parameters[1]
&& storage_device_lun.disk_id == address_parameters[2]) {
m_boot_block_device = storage_device;
chosen_storage_device = storage_device;
break;
}
}
if (chosen_storage_device)
resolve_partition_from_boot_device_parameter(*chosen_storage_device, logical_unit_number_device_prefix);
}
UNMAP_AFTER_INIT void StorageManagement::determine_boot_device()
{
VERIFY(!m_controllers.is_empty());
if (m_boot_argument.starts_with(block_device_prefix)) {
determine_block_boot_device();
return;
}
if (m_boot_argument.starts_with(partition_uuid_prefix)) {
determine_boot_device_with_partition_uuid();
return;
}
if (m_boot_argument.starts_with(logical_unit_number_device_prefix)) {
determine_boot_device_with_logical_unit_number();
return;
}
if (m_boot_argument.starts_with(ata_device_prefix)) {
determine_ata_boot_device();
return;
}
if (m_boot_argument.starts_with(nvme_device_prefix)) {
determine_nvme_boot_device();
return;
}
PANIC("StorageManagement: Invalid root boot parameter.");
}
UNMAP_AFTER_INIT void StorageManagement::determine_boot_device_with_partition_uuid()
{
VERIFY(!m_storage_devices.is_empty());
VERIFY(m_boot_argument.starts_with(partition_uuid_prefix));
auto partition_uuid = UUID(m_boot_argument.substring_view(partition_uuid_prefix.length()), UUID::Endianness::Mixed);
for (auto& storage_device : m_storage_devices) {
for (auto& partition : storage_device.partitions()) {
if (partition.metadata().unique_guid().is_zero())
continue;
if (partition.metadata().unique_guid() == partition_uuid) {
m_boot_block_device = partition;
break;
}
}
}
}
LockRefPtr<BlockDevice> StorageManagement::boot_block_device() const
{
return m_boot_block_device.strong_ref();
}
MajorNumber StorageManagement::storage_type_major_number()
{
return 3;
}
MinorNumber StorageManagement::generate_storage_minor_number()
{
return s_storage_device_minor_number.fetch_add(1);
}
MinorNumber StorageManagement::generate_partition_minor_number()
{
return s_partition_device_minor_number.fetch_add(1);
}
u32 StorageManagement::generate_controller_id()
{
return s_controller_id.fetch_add(1);
}
NonnullLockRefPtr<FileSystem> StorageManagement::root_filesystem() const
{
auto boot_device_description = boot_block_device();
if (!boot_device_description) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: Couldn't find a suitable device to boot from");
}
auto description_or_error = OpenFileDescription::try_create(boot_device_description.release_nonnull());
VERIFY(!description_or_error.is_error());
auto file_system = Ext2FS::try_create(description_or_error.release_value()).release_value();
if (auto result = file_system->initialize(); result.is_error()) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: Couldn't open root filesystem: {}", result.error());
}
return file_system;
}
UNMAP_AFTER_INIT void StorageManagement::initialize(StringView root_device, bool force_pio, bool poll)
{
VERIFY(s_storage_device_minor_number == 0);
m_boot_argument = root_device;
if (PCI::Access::is_disabled()) {
#if ARCH(I386) || ARCH(X86_64)
// Note: If PCI is disabled, we assume that at least we have an ISA IDE controller
// to probe and use
m_controllers.append(ISAIDEController::initialize());
#endif
} else {
enumerate_pci_controllers(force_pio, poll);
}
enumerate_storage_devices();
enumerate_disk_partitions();
determine_boot_device();
if (m_boot_block_device.is_null()) {
dump_storage_devices_and_partitions();
PANIC("StorageManagement: boot device {} not found", m_boot_argument);
}
}
StorageManagement& StorageManagement::the()
{
return *s_the;
}
}