serenity/Kernel/Time/HPET.cpp
Tom d5bb5d109b Kernel: Fix HPET timer not firing in Bochs
* Change the register structures to use the volatile keyword explicitly
  on the register values. This avoids accidentally omitting it as any
  access will be guaranteed volatile.
* Don't assume we can read/write 64 bit value to the main counter and
  the comparator. Not all HPET implementations may support this. So,
  just use 32 bit words to access the registers. This ultimately works
  around a bug in Bochs 2.6.11 that loses 32 bits of a 64 bit write to
  a timer's comparator register (it internally writes one half and
  clears the Tn_VAL_SET_CNF bit, and then because it's cleared it
  fails to write the second half).
* Properly calculate the tick duration in calculate_ticks_in_nanoseconds
* As per specification, changing the frequency of one periodic timer
  requires a restart of all periodic timers as it requires the main
  counter to be reset.
2020-11-06 15:51:56 +01:00

408 lines
16 KiB
C++

/*
* Copyright (c) 2020, Liav A. <liavalb@hotmail.co.il>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/StringView.h>
#include <Kernel/ACPI/Parser.h>
#include <Kernel/Interrupts/InterruptManagement.h>
#include <Kernel/Time/HPET.h>
#include <Kernel/Time/HPETComparator.h>
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/TypedMapping.h>
namespace Kernel {
#define ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD 0x05F5E100
#define NANOSECOND_PERIOD_TO_HERTZ(x) 1000000000 / x
#define MEGAHERTZ_TO_HERTZ(x) (x / 1000000)
//#define HPET_DEBUG
namespace HPETFlags {
enum class Attributes {
Counter64BitCapable = 1 << 13,
LegacyReplacementRouteCapable = 1 << 15
};
enum class Configuration {
Enable = 1 << 0,
LegacyReplacementRoute = 1 << 1
};
enum class TimerConfiguration : u32 {
LevelTriggered = 1 << 1,
InterruptEnable = 1 << 2,
GeneratePeriodicInterrupt = 1 << 3,
PeriodicInterruptCapable = 1 << 4,
Timer64BitsCapable = 1 << 5,
ValueSet = 1 << 6,
Force32BitMode = 1 << 8,
FSBInterruptEnable = 1 << 14,
FSBInterruptDelivery = 1 << 15
};
};
struct [[gnu::packed]] HPETRegister
{
volatile u32 low;
volatile u32 high;
};
struct [[gnu::packed]] TimerStructure
{
volatile u32 capabilities;
volatile u32 interrupt_routing;
HPETRegister comparator_value;
volatile u64 fsb_interrupt_route;
u64 reserved;
};
struct [[gnu::packed]] HPETCapabilityRegister
{
// Note: We must do a 32 bit access to offsets 0x0, or 0x4 only, according to HPET spec.
volatile u32 attributes;
volatile u32 main_counter_tick_period;
u64 reserved;
};
struct [[gnu::packed]] HPETRegistersBlock
{
HPETCapabilityRegister capabilities;
HPETRegister configuration;
u64 reserved1;
HPETRegister interrupt_status;
u8 reserved2[0xF0 - 0x28];
HPETRegister main_counter_value;
u64 reserved3;
TimerStructure timers[3];
u8 reserved4[0x400 - 0x160];
};
static_assert(__builtin_offsetof(HPETRegistersBlock, main_counter_value) == 0xf0);
static_assert(__builtin_offsetof(HPETRegistersBlock, timers[0]) == 0x100);
static_assert(__builtin_offsetof(HPETRegistersBlock, timers[1]) == 0x120);
static u64 read_register_safe64(const HPETRegister& reg)
{
// As per 2.4.7 this reads the 64 bit value in a consistent manner
// using only 32 bit reads
u32 low, high = reg.high;
for (;;) {
low = reg.low;
u32 new_high = reg.high;
if (new_high == high)
break;
high = new_high;
}
return ((u64)high << 32) | (u64)low;
}
static HPET* s_hpet;
static bool hpet_initialized { false };
bool HPET::initialized()
{
return hpet_initialized;
}
HPET& HPET::the()
{
ASSERT(HPET::initialized());
ASSERT(s_hpet != nullptr);
return *s_hpet;
}
bool HPET::test_and_initialize()
{
ASSERT(!HPET::initialized());
hpet_initialized = true;
auto hpet = ACPI::Parser::the()->find_table("HPET");
if (hpet.is_null())
return false;
klog() << "HPET @ " << hpet;
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
// Note: HPET is only usable from System Memory
ASSERT(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
if (TimeManagement::is_hpet_periodic_mode_allowed()) {
if (!check_for_exisiting_periodic_timers()) {
dbg() << "HPET: No periodic capable timers";
return false;
}
}
new HPET(PhysicalAddress(hpet));
return true;
}
bool HPET::check_for_exisiting_periodic_timers()
{
auto hpet = ACPI::Parser::the()->find_table("HPET");
if (hpet.is_null())
return false;
auto sdt = map_typed<ACPI::Structures::HPET>(hpet);
ASSERT(sdt->event_timer_block.address_space == 0);
auto registers = map_typed<HPETRegistersBlock>(PhysicalAddress(sdt->event_timer_block.address));
size_t timers_count = ((registers->capabilities.attributes >> 8) & 0x1f) + 1;
for (size_t index = 0; index < timers_count; index++) {
if (registers->timers[index].capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable)
return true;
}
return false;
}
void HPET::global_disable()
{
auto& regs = registers();
regs.configuration.low = regs.configuration.low & ~(u32)HPETFlags::Configuration::Enable;
}
void HPET::global_enable()
{
auto& regs = registers();
regs.configuration.low = regs.configuration.low | (u32)HPETFlags::Configuration::Enable;
}
void HPET::update_periodic_comparator_value()
{
// According to 2.3.9.2.2 the only safe way to change the periodic timer frequency
// is to disable all periodic timers, reset the main counter and each timer's comparator value.
// This introduces time drift, so it should be avoided unless absolutely necessary.
global_disable();
auto& regs = registers();
u64 previous_main_value = (u64)regs.main_counter_value.low | ((u64)regs.main_counter_value.high << 32);
regs.main_counter_value.low = 0;
regs.main_counter_value.high = 0;
for (auto& comparator : m_comparators) {
auto& timer = regs.timers[comparator.comparator_number()];
if (comparator.is_periodic()) {
// Note that this means we're restarting all periodic timers. There is no
// way to resume periodic timers properly because we reset the main counter
// and we can only write the period into the comparator value...
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::ValueSet;
u64 value = frequency() / comparator.ticks_per_second();
#ifdef HPET_DEBUG
dbg() << "HPET: Update periodic comparator " << comparator.comparator_number() << " comparator value to " << value << " main value was: " << previous_main_value;
#endif
timer.comparator_value.low = (u32)value;
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::ValueSet;
timer.comparator_value.high = (u32)(value >> 32);
} else {
// Set the new target comparator value to the delta to the remaining ticks
u64 current_value = (u64)timer.comparator_value.low | ((u64)timer.comparator_value.high << 32);
u64 value = current_value - previous_main_value;
#ifdef HPET_DEBUG
dbg() << "HPET: Update non-periodic comparator " << comparator.comparator_number() << " comparator value from " << current_value << " to " << value << " main value was: " << previous_main_value;
#endif
timer.comparator_value.low = (u32)value;
timer.comparator_value.high = (u32)(value >> 32);
}
}
global_enable();
}
void HPET::update_non_periodic_comparator_value(const HPETComparator& comparator)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!comparator.is_periodic());
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto& regs = registers();
auto& timer = regs.timers[comparator.comparator_number()];
u64 value = frequency() / comparator.ticks_per_second();
// NOTE: If the main counter passes this new value before we finish writing it, we will never receive an interrupt!
u64 new_counter_value = read_register_safe64(regs.main_counter_value) + value;
timer.comparator_value.high = (u32)(new_counter_value >> 32);
timer.comparator_value.low = (u32)new_counter_value;
}
void HPET::enable_periodic_interrupt(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Set comparator " << comparator.comparator_number() << " to be periodic.";
#endif
disable(comparator);
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto& timer = registers().timers[comparator.comparator_number()];
auto capabilities = timer.capabilities;
ASSERT(capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
timer.capabilities = capabilities | (u32)HPETFlags::TimerConfiguration::GeneratePeriodicInterrupt;
enable(comparator);
}
void HPET::disable_periodic_interrupt(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Disable periodic interrupt in comparator " << comparator.comparator_number() << ".";
#endif
disable(comparator);
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto& timer = registers().timers[comparator.comparator_number()];
auto capabilities = timer.capabilities;
ASSERT(capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable);
timer.capabilities = capabilities & ~(u32)HPETFlags::TimerConfiguration::GeneratePeriodicInterrupt;
enable(comparator);
}
void HPET::disable(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Disable comparator " << comparator.comparator_number() << ".";
#endif
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto& timer = registers().timers[comparator.comparator_number()];
timer.capabilities = timer.capabilities & ~(u32)HPETFlags::TimerConfiguration::InterruptEnable;
}
void HPET::enable(const HPETComparator& comparator)
{
#ifdef HPET_DEBUG
klog() << "HPET: Enable comparator " << comparator.comparator_number() << ".";
#endif
ASSERT(comparator.comparator_number() <= m_comparators.size());
auto& timer = registers().timers[comparator.comparator_number()];
timer.capabilities = timer.capabilities | (u32)HPETFlags::TimerConfiguration::InterruptEnable;
}
u64 HPET::frequency() const
{
return m_frequency;
}
Vector<unsigned> HPET::capable_interrupt_numbers(const HPETComparator& comparator)
{
ASSERT(comparator.comparator_number() <= m_comparators.size());
Vector<unsigned> capable_interrupts;
auto& comparator_registers = registers().timers[comparator.comparator_number()];
u32 interrupt_bitfield = comparator_registers.interrupt_routing;
for (size_t index = 0; index < 32; index++) {
if (interrupt_bitfield & 1)
capable_interrupts.append(index);
interrupt_bitfield >>= 1;
}
return capable_interrupts;
}
Vector<unsigned> HPET::capable_interrupt_numbers(u8 comparator_number)
{
ASSERT(comparator_number <= m_comparators.size());
Vector<unsigned> capable_interrupts;
auto& comparator_registers = registers().timers[comparator_number];
u32 interrupt_bitfield = comparator_registers.interrupt_routing;
for (size_t index = 0; index < 32; index++) {
if (interrupt_bitfield & 1)
capable_interrupts.append(index);
interrupt_bitfield >>= 1;
}
return capable_interrupts;
}
void HPET::set_comparator_irq_vector(u8 comparator_number, u8 irq_vector)
{
ASSERT(comparator_number <= m_comparators.size());
auto& comparator_registers = registers().timers[comparator_number];
comparator_registers.capabilities = comparator_registers.capabilities | (irq_vector << 9);
}
bool HPET::is_periodic_capable(u8 comparator_number) const
{
ASSERT(comparator_number <= m_comparators.size());
auto& comparator_registers = registers().timers[comparator_number];
return comparator_registers.capabilities & (u32)HPETFlags::TimerConfiguration::PeriodicInterruptCapable;
}
void HPET::set_comparators_to_optimal_interrupt_state(size_t)
{
// FIXME: Implement this method for allowing to use HPET timers 2-31...
ASSERT_NOT_REACHED();
}
PhysicalAddress HPET::find_acpi_hpet_registers_block()
{
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
ASSERT(sdt->event_timer_block.address_space == (u8)ACPI::GenericAddressStructure::AddressSpace::SystemMemory);
return PhysicalAddress(sdt->event_timer_block.address);
}
const HPETRegistersBlock& HPET::registers() const
{
return *(const HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
}
HPETRegistersBlock& HPET::registers()
{
return *(HPETRegistersBlock*)m_hpet_mmio_region->vaddr().offset(m_physical_acpi_hpet_registers.offset_in_page()).as_ptr();
}
u64 HPET::calculate_ticks_in_nanoseconds() const
{
// ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD == 100 nanoseconds
return ((u64)registers().capabilities.main_counter_tick_period * 100ull) / ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD;
}
HPET::HPET(PhysicalAddress acpi_hpet)
: m_physical_acpi_hpet_table(acpi_hpet)
, m_physical_acpi_hpet_registers(find_acpi_hpet_registers_block())
, m_hpet_mmio_region(MM.allocate_kernel_region(m_physical_acpi_hpet_registers.page_base(), PAGE_SIZE, "HPET MMIO", Region::Access::Read | Region::Access::Write))
{
s_hpet = this; // Make available as soon as possible so that IRQs can use it
auto sdt = map_typed<const volatile ACPI::Structures::HPET>(m_physical_acpi_hpet_table);
m_vendor_id = sdt->pci_vendor_id;
m_minimum_tick = sdt->mininum_clock_tick;
klog() << "HPET: Minimum clock tick - " << m_minimum_tick;
auto& regs = registers();
// Note: We must do a 32 bit access to offsets 0x0, or 0x4 only.
size_t timers_count = ((regs.capabilities.attributes >> 8) & 0x1f) + 1;
klog() << "HPET: Timers count - " << timers_count;
klog() << "HPET: Main counter size: " << ((regs.capabilities.attributes & (u32)HPETFlags::Attributes::Counter64BitCapable) ? "64 bit" : "32 bit");
for (size_t i = 0; i < timers_count; i++) {
bool capable_64_bit = regs.timers[i].capabilities & (u32)HPETFlags::TimerConfiguration::Timer64BitsCapable;
klog() << "HPET: Timer[" << i << "] comparator size: " << (capable_64_bit ? "64 bit" : "32 bit") << " mode: " << ((!capable_64_bit || (regs.timers[i].capabilities & (u32)HPETFlags::TimerConfiguration::Force32BitMode)) ? "32 bit" : "64 bit");
}
ASSERT(timers_count >= 2);
global_disable();
m_frequency = NANOSECOND_PERIOD_TO_HERTZ(calculate_ticks_in_nanoseconds());
klog() << "HPET: frequency " << m_frequency << " Hz (" << MEGAHERTZ_TO_HERTZ(m_frequency) << " MHz) resolution: " << calculate_ticks_in_nanoseconds() << "ns";
ASSERT(regs.capabilities.main_counter_tick_period <= ABSOLUTE_MAXIMUM_COUNTER_TICK_PERIOD);
// Reset the counter, just in case...
regs.main_counter_value.high = 0;
regs.main_counter_value.low = 0;
if (regs.capabilities.attributes & (u32)HPETFlags::Attributes::LegacyReplacementRouteCapable)
regs.configuration.low = regs.configuration.low | (u32)HPETFlags::Configuration::LegacyReplacementRoute;
m_comparators.append(HPETComparator::create(0, 0, is_periodic_capable(0)));
m_comparators.append(HPETComparator::create(1, 8, is_periodic_capable(1)));
global_enable();
}
}