serenity/Userland/Libraries/LibGL/SoftwareGLContext.cpp

932 lines
28 KiB
C++

/*
* Copyright (c) 2021, Jesse Buhagiar <jooster669@gmail.com>
* Copyright (c) 2021, Stephan Unverwerth <s.unverwerth@gmx.de>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "SoftwareGLContext.h"
#include "GLStruct.h"
#include "SoftwareRasterizer.h"
#include <AK/Assertions.h>
#include <AK/Debug.h>
#include <AK/Format.h>
#include <AK/QuickSort.h>
#include <AK/TemporaryChange.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <LibGfx/Bitmap.h>
#include <LibGfx/Painter.h>
#include <LibGfx/Vector4.h>
#include <math.h>
using AK::dbgln;
namespace GL {
// FIXME: We should set this up when we create the context!
static constexpr size_t MATRIX_STACK_LIMIT = 1024;
#define APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(name, ...) \
if (should_append_to_listing()) { \
append_to_listing<&SoftwareGLContext::name>(__VA_ARGS__); \
if (!should_execute_after_appending_to_listing()) \
return; \
}
SoftwareGLContext::SoftwareGLContext(Gfx::Bitmap& frontbuffer)
: m_frontbuffer(frontbuffer)
, m_rasterizer(frontbuffer.size())
{
}
void SoftwareGLContext::gl_begin(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_begin, mode);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (mode < GL_TRIANGLES || mode > GL_POLYGON) {
m_error = GL_INVALID_ENUM;
return;
}
m_current_draw_mode = mode;
m_in_draw_state = true; // Certain commands will now generate an error
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_clear(GLbitfield mask)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear, mask);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (mask & ~(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) {
m_error = GL_INVALID_ENUM;
return;
}
if (mask & GL_COLOR_BUFFER_BIT)
m_rasterizer.clear_color(m_clear_color);
if (mask & GL_DEPTH_BUFFER_BIT)
m_rasterizer.clear_depth(static_cast<float>(m_clear_depth));
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_clear_color(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_color, red, green, blue, alpha);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
m_clear_color = { red, green, blue, alpha };
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_clear_depth(GLdouble depth)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_clear_depth, depth);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
m_clear_depth = depth;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_color(GLdouble r, GLdouble g, GLdouble b, GLdouble a)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_color, r, g, b, a);
m_current_vertex_color = { (float)r, (float)g, (float)b, (float)a };
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_end()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_end);
// At this point, the user has effectively specified that they are done with defining the geometry
// of what they want to draw. We now need to do a few things (https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview):
//
// 1. Transform all of the vertices in the current vertex list into eye space by mulitplying the model-view matrix
// 2. Transform all of the vertices from eye space into clip space by multiplying by the projection matrix
// 3. If culling is enabled, we cull the desired faces (https://learnopengl.com/Advanced-OpenGL/Face-culling)
// 4. Each element of the vertex is then divided by w to bring the positions into NDC (Normalized Device Coordinates)
// 5. The vertices are sorted (for the rasteriser, how are we doing this? 3Dfx did this top to bottom in terms of vertex y co-ordinates)
// 6. The vertices are then sent off to the rasteriser and drawn to the screen
float scr_width = m_frontbuffer->width();
float scr_height = m_frontbuffer->height();
// Make sure we had a `glBegin` before this call...
if (!m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
// Let's construct some triangles
if (m_current_draw_mode == GL_TRIANGLES) {
GLTriangle triangle;
for (size_t i = 0; i < vertex_list.size(); i += 3) {
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_QUADS) {
// We need to construct two triangles to form the quad
GLTriangle triangle;
VERIFY(vertex_list.size() % 4 == 0);
for (size_t i = 0; i < vertex_list.size(); i += 4) {
// Triangle 1
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
// Triangle 2
triangle.vertices[0] = vertex_list.at(i + 2);
triangle.vertices[1] = vertex_list.at(i + 3);
triangle.vertices[2] = vertex_list.at(i);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_TRIANGLE_FAN) {
GLTriangle triangle;
triangle.vertices[0] = vertex_list.at(0); // Root vertex is always the vertex defined first
for (size_t i = 1; i < vertex_list.size() - 1; i++) // This is technically `n-2` triangles. We start at index 1
{
triangle.vertices[1] = vertex_list.at(i);
triangle.vertices[2] = vertex_list.at(i + 1);
triangle_list.append(triangle);
}
} else if (m_current_draw_mode == GL_TRIANGLE_STRIP) {
GLTriangle triangle;
for (size_t i = 0; i < vertex_list.size() - 2; i++) {
triangle.vertices[0] = vertex_list.at(i);
triangle.vertices[1] = vertex_list.at(i + 1);
triangle.vertices[2] = vertex_list.at(i + 2);
triangle_list.append(triangle);
}
} else {
m_error = GL_INVALID_ENUM;
return;
}
// Now let's transform each triangle and send that to the GPU
for (size_t i = 0; i < triangle_list.size(); i++) {
GLTriangle& triangle = triangle_list.at(i);
GLVertex& vertexa = triangle.vertices[0];
GLVertex& vertexb = triangle.vertices[1];
GLVertex& vertexc = triangle.vertices[2];
FloatVector4 veca({ vertexa.x, vertexa.y, vertexa.z, 1.0f });
FloatVector4 vecb({ vertexb.x, vertexb.y, vertexb.z, 1.0f });
FloatVector4 vecc({ vertexc.x, vertexc.y, vertexc.z, 1.0f });
// First multiply the vertex by the MODELVIEW matrix and then the PROJECTION matrix
veca = m_model_view_matrix * veca;
veca = m_projection_matrix * veca;
vecb = m_model_view_matrix * vecb;
vecb = m_projection_matrix * vecb;
vecc = m_model_view_matrix * vecc;
vecc = m_projection_matrix * vecc;
// At this point, we're in clip space
// Here's where we do the clipping. This is a really crude implementation of the
// https://learnopengl.com/Getting-started/Coordinate-Systems
// "Note that if only a part of a primitive e.g. a triangle is outside the clipping volume OpenGL
// will reconstruct the triangle as one or more triangles to fit inside the clipping range. "
//
// ALL VERTICES ARE DEFINED IN A CLOCKWISE ORDER
// Okay, let's do some face culling first
Vector<FloatVector4> vecs;
Vector<GLVertex> verts;
vecs.append(veca);
vecs.append(vecb);
vecs.append(vecc);
m_clipper.clip_triangle_against_frustum(vecs);
// TODO: Copy color and UV information too!
for (size_t vec_idx = 0; vec_idx < vecs.size(); vec_idx++) {
FloatVector4& vec = vecs.at(vec_idx);
GLVertex vertex;
// Perform the perspective divide
if (vec.w() != 0.0f) {
vec.set_x(vec.x() / vec.w());
vec.set_y(vec.y() / vec.w());
vec.set_z(vec.z() / vec.w());
vec.set_w(1 / vec.w());
}
vertex.x = vec.x();
vertex.y = vec.y();
vertex.z = vec.z();
vertex.w = vec.w();
// FIXME: This is to suppress any -Wunused errors
vertex.u = 0.0f;
vertex.v = 0.0f;
if (vec_idx == 0) {
vertex.r = vertexa.r;
vertex.g = vertexa.g;
vertex.b = vertexa.b;
vertex.a = vertexa.a;
} else if (vec_idx == 1) {
vertex.r = vertexb.r;
vertex.g = vertexb.g;
vertex.b = vertexb.b;
vertex.a = vertexb.a;
} else {
vertex.r = vertexc.r;
vertex.g = vertexc.g;
vertex.b = vertexc.b;
vertex.a = vertexc.a;
}
vertex.x = (vec.x() + 1.0f) * (scr_width / 2.0f) + 0.0f; // TODO: 0.0f should be something!?
vertex.y = scr_height - ((vec.y() + 1.0f) * (scr_height / 2.0f) + 0.0f);
vertex.z = vec.z();
verts.append(vertex);
}
if (verts.size() == 0) {
continue;
} else if (verts.size() == 3) {
GLTriangle tri;
tri.vertices[0] = verts.at(0);
tri.vertices[1] = verts.at(1);
tri.vertices[2] = verts.at(2);
processed_triangles.append(tri);
} else if (verts.size() == 4) {
GLTriangle tri1;
GLTriangle tri2;
tri1.vertices[0] = verts.at(0);
tri1.vertices[1] = verts.at(1);
tri1.vertices[2] = verts.at(2);
processed_triangles.append(tri1);
tri2.vertices[0] = verts.at(0);
tri2.vertices[1] = verts.at(2);
tri2.vertices[2] = verts.at(3);
processed_triangles.append(tri2);
}
}
for (size_t i = 0; i < processed_triangles.size(); i++) {
GLTriangle& triangle = processed_triangles.at(i);
// Let's calculate the (signed) area of the triangle
// https://cp-algorithms.com/geometry/oriented-triangle-area.html
float dxAB = triangle.vertices[0].x - triangle.vertices[1].x; // A.x - B.x
float dxBC = triangle.vertices[1].x - triangle.vertices[2].x; // B.X - C.x
float dyAB = triangle.vertices[0].y - triangle.vertices[1].y;
float dyBC = triangle.vertices[1].y - triangle.vertices[2].y;
float area = (dxAB * dyBC) - (dxBC * dyAB);
if (area == 0.0f)
continue;
if (m_cull_faces) {
bool is_front = (m_front_face == GL_CCW ? area > 0 : area < 0);
if (is_front && (m_culled_sides == GL_FRONT || m_culled_sides == GL_FRONT_AND_BACK))
continue;
if (!is_front && (m_culled_sides == GL_BACK || m_culled_sides == GL_FRONT_AND_BACK))
continue;
}
m_rasterizer.submit_triangle(triangle);
}
triangle_list.clear();
processed_triangles.clear();
vertex_list.clear();
m_in_draw_state = false;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_frustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_frustum, left, right, bottom, top, near_val, far_val);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
// Let's do some math!
// FIXME: Are we losing too much precision by doing this?
float a = static_cast<float>((right + left) / (right - left));
float b = static_cast<float>((top + bottom) / (top - bottom));
float c = static_cast<float>(-((far_val + near_val) / (far_val - near_val)));
float d = static_cast<float>(-((2 * (far_val * near_val)) / (far_val - near_val)));
FloatMatrix4x4 frustum {
((2 * (float)near_val) / ((float)right - (float)left)), 0, a, 0,
0, ((2 * (float)near_val) / ((float)top - (float)bottom)), b, 0,
0, 0, c, d,
0, 0, -1, 0
};
if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * frustum;
} else if (m_current_matrix_mode == GL_MODELVIEW) {
dbgln_if(GL_DEBUG, "glFrustum(): frustum created with curr_matrix_mode == GL_MODELVIEW!!!");
m_projection_matrix = m_model_view_matrix * frustum;
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_ortho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near_val, GLdouble far_val)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_ortho, left, right, bottom, top, near_val, far_val);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (left == right || bottom == top || near_val == far_val) {
m_error = GL_INVALID_VALUE;
return;
}
auto rl = right - left;
auto tb = top - bottom;
auto fn = far_val - near_val;
auto tx = -(right + left) / rl;
auto ty = -(top + bottom) / tb;
auto tz = -(far_val + near_val) / fn;
FloatMatrix4x4 projection {
static_cast<float>(2 / rl), 0, 0, static_cast<float>(tx),
0, static_cast<float>(2 / tb), 0, static_cast<float>(ty),
0, 0, static_cast<float>(-2 / fn), static_cast<float>(tz),
0, 0, 0, 1
};
if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * projection;
} else if (m_current_matrix_mode == GL_MODELVIEW) {
m_projection_matrix = m_model_view_matrix * projection;
}
m_error = GL_NO_ERROR;
}
GLenum SoftwareGLContext::gl_get_error()
{
if (m_in_draw_state) {
return GL_INVALID_OPERATION;
}
return m_error;
}
GLubyte* SoftwareGLContext::gl_get_string(GLenum name)
{
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return nullptr;
}
switch (name) {
case GL_VENDOR:
return reinterpret_cast<GLubyte*>(const_cast<char*>("The SerenityOS Developers"));
case GL_RENDERER:
return reinterpret_cast<GLubyte*>(const_cast<char*>("SerenityOS OpenGL"));
case GL_VERSION:
return reinterpret_cast<GLubyte*>(const_cast<char*>("OpenGL 1.2 SerenityOS"));
default:
dbgln_if(GL_DEBUG, "glGetString(): Unknown enum name!");
break;
}
m_error = GL_INVALID_ENUM;
return nullptr;
}
void SoftwareGLContext::gl_load_identity()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_load_identity);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = FloatMatrix4x4::identity();
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = FloatMatrix4x4::identity();
else
VERIFY_NOT_REACHED();
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_load_matrix(const FloatMatrix4x4& matrix)
{
if (should_append_to_listing()) {
auto ptr = store_in_listing(matrix);
append_to_listing<&SoftwareGLContext::gl_load_matrix>(*ptr);
if (!should_execute_after_appending_to_listing())
return;
}
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = matrix;
else if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = matrix;
else
VERIFY_NOT_REACHED();
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_matrix_mode(GLenum mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_matrix_mode, mode);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (mode < GL_MODELVIEW || mode > GL_PROJECTION) {
m_error = GL_INVALID_ENUM;
return;
}
m_current_matrix_mode = mode;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_push_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_push_matrix);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
dbgln_if(GL_DEBUG, "glPushMatrix(): Pushing matrix to the matrix stack (matrix_mode {})", m_current_matrix_mode);
switch (m_current_matrix_mode) {
case GL_PROJECTION:
if (m_projection_matrix_stack.size() >= MATRIX_STACK_LIMIT) {
m_error = GL_STACK_OVERFLOW;
return;
}
m_projection_matrix_stack.append(m_projection_matrix);
break;
case GL_MODELVIEW:
if (m_model_view_matrix_stack.size() >= MATRIX_STACK_LIMIT) {
m_error = GL_STACK_OVERFLOW;
return;
}
m_model_view_matrix_stack.append(m_model_view_matrix);
break;
default:
dbgln_if(GL_DEBUG, "glPushMatrix(): Attempt to push matrix with invalid matrix mode {})", m_current_matrix_mode);
return;
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_pop_matrix()
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_pop_matrix);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
dbgln_if(GL_DEBUG, "glPopMatrix(): Popping matrix from matrix stack (matrix_mode = {})", m_current_matrix_mode);
// FIXME: Make sure stack::top() doesn't cause any nasty issues if it's empty (that could result in a lockup/hang)
switch (m_current_matrix_mode) {
case GL_PROJECTION:
if (m_projection_matrix_stack.size() == 0) {
m_error = GL_STACK_UNDERFLOW;
return;
}
m_projection_matrix = m_projection_matrix_stack.take_last();
break;
case GL_MODELVIEW:
if (m_model_view_matrix_stack.size() == 0) {
m_error = GL_STACK_UNDERFLOW;
return;
}
m_model_view_matrix = m_model_view_matrix_stack.take_last();
break;
default:
dbgln_if(GL_DEBUG, "glPopMatrix(): Attempt to pop matrix with invalid matrix mode, {}", m_current_matrix_mode);
return;
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_rotate(GLdouble angle, GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_rotate, angle, x, y, z);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
FloatVector3 axis = { (float)x, (float)y, (float)z };
axis.normalize();
auto rotation_mat = Gfx::rotation_matrix(axis, static_cast<float>(angle));
if (m_current_matrix_mode == GL_MODELVIEW)
m_model_view_matrix = m_model_view_matrix * rotation_mat;
else if (m_current_matrix_mode == GL_PROJECTION)
m_projection_matrix = m_projection_matrix * rotation_mat;
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_scale(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_scale, x, y, z);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_current_matrix_mode == GL_MODELVIEW) {
m_model_view_matrix = m_model_view_matrix * Gfx::scale_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
} else if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * Gfx::scale_matrix(FloatVector3 { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) });
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_translate(GLdouble x, GLdouble y, GLdouble z)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_translate, x, y, z);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_current_matrix_mode == GL_MODELVIEW) {
m_model_view_matrix = m_model_view_matrix * Gfx::translation_matrix(FloatVector3 { (float)x, (float)y, (float)z });
} else if (m_current_matrix_mode == GL_PROJECTION) {
m_projection_matrix = m_projection_matrix * Gfx::translation_matrix(FloatVector3 { (float)x, (float)y, (float)z });
}
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_vertex(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_vertex, x, y, z, w);
GLVertex vertex;
vertex.x = x;
vertex.y = y;
vertex.z = z;
vertex.w = w;
vertex.r = m_current_vertex_color.x();
vertex.g = m_current_vertex_color.y();
vertex.b = m_current_vertex_color.z();
vertex.a = m_current_vertex_color.w();
// FIXME: This is to suppress any -Wunused errors
vertex.w = 0.0f;
vertex.u = 0.0f;
vertex.v = 0.0f;
vertex_list.append(vertex);
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_viewport(GLint x, GLint y, GLsizei width, GLsizei height)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_viewport, x, y, width, height);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
(void)(x);
(void)(y);
(void)(width);
(void)(height);
m_error = GL_NO_ERROR;
}
void SoftwareGLContext::gl_enable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_enable, capability);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_CULL_FACE:
m_cull_faces = true;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = true;
rasterizer_options.enable_depth_test = true;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = true;
rasterizer_options.enable_blending = true;
update_rasterizer_options = true;
break;
default:
m_error = GL_INVALID_ENUM;
break;
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_disable(GLenum capability)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_disable, capability);
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
auto rasterizer_options = m_rasterizer.options();
bool update_rasterizer_options = false;
switch (capability) {
case GL_CULL_FACE:
m_cull_faces = false;
break;
case GL_DEPTH_TEST:
m_depth_test_enabled = false;
rasterizer_options.enable_depth_test = false;
update_rasterizer_options = true;
break;
case GL_BLEND:
m_blend_enabled = false;
rasterizer_options.enable_blending = false;
update_rasterizer_options = false;
break;
default:
m_error = GL_INVALID_ENUM;
break;
}
if (update_rasterizer_options)
m_rasterizer.set_options(rasterizer_options);
}
void SoftwareGLContext::gl_front_face(GLenum face)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_front_face, face);
if (face < GL_CW || face > GL_CCW) {
m_error = GL_INVALID_ENUM;
return;
}
m_front_face = face;
}
void SoftwareGLContext::gl_cull_face(GLenum cull_mode)
{
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_cull_face, cull_mode);
if (cull_mode < GL_FRONT || cull_mode > GL_FRONT_AND_BACK) {
m_error = GL_INVALID_ENUM;
return;
}
m_culled_sides = cull_mode;
}
GLuint SoftwareGLContext::gl_gen_lists(GLsizei range)
{
if (range <= 0) {
m_error = GL_INVALID_VALUE;
return 0;
}
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return 0;
}
auto initial_entry = m_listings.size();
m_listings.resize(range + initial_entry);
return initial_entry + 1;
}
void SoftwareGLContext::gl_call_list(GLuint list)
{
if (m_gl_call_depth > max_allowed_gl_call_depth)
return;
APPEND_TO_CALL_LIST_AND_RETURN_IF_NEEDED(gl_call_list, list);
if (m_listings.size() < list)
return;
TemporaryChange change { m_gl_call_depth, m_gl_call_depth + 1 };
auto& listing = m_listings[list - 1];
for (auto& entry : listing.entries) {
entry.function.visit([&](auto& function) {
entry.arguments.visit([&](auto& arguments) {
auto apply = [&]<typename... Args>(Args && ... args)
{
if constexpr (requires { (this->*function)(forward<Args>(args)...); })
(this->*function)(forward<Args>(args)...);
};
arguments.apply_as_args(apply);
});
});
}
}
void SoftwareGLContext::gl_delete_lists(GLuint list, GLsizei range)
{
if (m_listings.size() < list || m_listings.size() <= list + range)
return;
for (auto& entry : m_listings.span().slice(list - 1, range))
entry.entries.clear();
}
void SoftwareGLContext::gl_end_list()
{
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (!m_current_listing_index.has_value()) {
m_error = GL_INVALID_OPERATION;
return;
}
m_listings[m_current_listing_index->index] = move(m_current_listing_index->listing);
m_current_listing_index.clear();
}
void SoftwareGLContext::gl_new_list(GLuint list, GLenum mode)
{
if (list == 0) {
m_error = GL_INVALID_VALUE;
return;
}
if (mode != GL_COMPILE && mode != GL_COMPILE_AND_EXECUTE) {
m_error = GL_INVALID_ENUM;
return;
}
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_current_listing_index.has_value()) {
m_error = GL_INVALID_OPERATION;
return;
}
if (m_listings.size() < list)
return;
m_current_listing_index = CurrentListing { {}, static_cast<size_t>(list - 1), mode };
}
void SoftwareGLContext::gl_flush()
{
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_finish()
{
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
// No-op since SoftwareGLContext is completely synchronous at the moment
}
void SoftwareGLContext::gl_blend_func(GLenum src_factor, GLenum dst_factor)
{
if (m_in_draw_state) {
m_error = GL_INVALID_OPERATION;
return;
}
// FIXME: The list of allowed enums differs between API versions
// This was taken from the 2.0 spec on https://docs.gl/gl2/glBlendFunc
if (!(src_factor == GL_ZERO
|| src_factor == GL_ONE
|| src_factor == GL_SRC_COLOR
|| src_factor == GL_ONE_MINUS_SRC_COLOR
|| src_factor == GL_DST_COLOR
|| src_factor == GL_ONE_MINUS_DST_COLOR
|| src_factor == GL_SRC_ALPHA
|| src_factor == GL_ONE_MINUS_SRC_ALPHA
|| src_factor == GL_DST_ALPHA
|| src_factor == GL_ONE_MINUS_DST_ALPHA
|| src_factor == GL_CONSTANT_COLOR
|| src_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| src_factor == GL_CONSTANT_ALPHA
|| src_factor == GL_ONE_MINUS_CONSTANT_ALPHA
|| src_factor == GL_SRC_ALPHA_SATURATE)) {
m_error = GL_INVALID_ENUM;
return;
}
if (!(dst_factor == GL_ZERO
|| dst_factor == GL_ONE
|| dst_factor == GL_SRC_COLOR
|| dst_factor == GL_ONE_MINUS_SRC_COLOR
|| dst_factor == GL_DST_COLOR
|| dst_factor == GL_ONE_MINUS_DST_COLOR
|| dst_factor == GL_SRC_ALPHA
|| dst_factor == GL_ONE_MINUS_SRC_ALPHA
|| dst_factor == GL_DST_ALPHA
|| dst_factor == GL_ONE_MINUS_DST_ALPHA
|| dst_factor == GL_CONSTANT_COLOR
|| dst_factor == GL_ONE_MINUS_CONSTANT_COLOR
|| dst_factor == GL_CONSTANT_ALPHA
|| dst_factor == GL_ONE_MINUS_CONSTANT_ALPHA)) {
m_error = GL_INVALID_ENUM;
return;
}
m_blend_source_factor = src_factor;
m_blend_destination_factor = dst_factor;
auto options = m_rasterizer.options();
options.blend_source_factor = m_blend_source_factor;
options.blend_destination_factor = m_blend_destination_factor;
m_rasterizer.set_options(options);
}
void SoftwareGLContext::present()
{
m_rasterizer.blit_to(*m_frontbuffer);
}
}