serenity/Userland/Demos/Tubes/Tubes.cpp
2023-04-11 06:38:18 -04:00

306 lines
9.8 KiB
C++

/*
* Copyright (c) 2022, Jelle Raaijmakers <jelle@gmta.nl>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/NumericLimits.h>
#include <AK/Random.h>
#include <Demos/Tubes/Shapes.h>
#include <Demos/Tubes/Tubes.h>
#include <LibGL/GLContext.h>
#include <LibGUI/Application.h>
#include <LibGUI/Event.h>
#include <LibGUI/Painter.h>
#include <LibGfx/Bitmap.h>
constexpr size_t grid_resolution = 15;
constexpr int reset_every_ticks = 900;
constexpr double rotation_range = 35.;
constexpr u8 tube_maximum_count = 12;
constexpr u8 tube_minimum_count = 3;
constexpr double tube_movement_per_tick = .25;
constexpr double tube_relative_thickness = .6;
constexpr int tube_travel_max_stretch = 6;
static double random_double()
{
return get_random<u32>() / static_cast<double>(NumericLimits<u32>::max());
}
static int random_int(int min, int max)
{
return min + round_to<int>(random_double() * (max - min));
}
static IntVector4 tube_rotation_for_direction(Direction direction)
{
switch (direction) {
case Direction::XPositive:
return { 0, 1, 0, -90 };
case Direction::XNegative:
return { 0, 1, 0, 90 };
case Direction::YPositive:
return { 1, 0, 0, 90 };
case Direction::YNegative:
return { 1, 0, 0, -90 };
case Direction::ZPositive:
return { 0, 1, 0, 180 };
case Direction::ZNegative:
return { 0, 0, 0, 0 };
default:
VERIFY_NOT_REACHED();
}
}
static IntVector3 vector_for_direction(Direction direction)
{
switch (direction) {
case Direction::XPositive:
return { 1, 0, 0 };
case Direction::XNegative:
return { -1, 0, 0 };
case Direction::YPositive:
return { 0, 1, 0 };
case Direction::YNegative:
return { 0, -1, 0 };
case Direction::ZPositive:
return { 0, 0, 1 };
case Direction::ZNegative:
return { 0, 0, -1 };
default:
VERIFY_NOT_REACHED();
}
}
Tubes::Tubes(int interval)
: m_grid(MUST(FixedArray<u8>::create(grid_resolution * grid_resolution * grid_resolution)))
{
on_screensaver_exit = []() { GUI::Application::the()->quit(); };
start_timer(interval);
}
void Tubes::choose_new_direction_for_tube(Tube& tube)
{
// Find all possible directions
Vector<Direction, 6> possible_directions;
for (int i = 1; i <= 6; ++i) {
auto direction = static_cast<Direction>(i);
auto direction_vector = vector_for_direction(direction);
auto check_position = tube.position + direction_vector;
if (is_valid_grid_position(check_position) && get_grid(check_position) == 0)
possible_directions.append(direction);
}
// If tube is stuck, kill it :^(
if (possible_directions.is_empty()) {
tube.direction = Direction::None;
tube.active = false;
return;
}
// Remove our old direction if we have other options available
Direction const old_direction = tube.direction;
if (possible_directions.size() >= 2 && possible_directions.contains_slow(old_direction))
possible_directions.remove_all_matching([&old_direction](Direction const& item) { return item == old_direction; });
// Select a random new direction
tube.direction = possible_directions[random_int(0, static_cast<int>(possible_directions.size()) - 1)];
// Determine how far we can go in this direction
auto direction_vector = vector_for_direction(tube.direction);
int max_stretch = random_int(1, tube_travel_max_stretch);
IntVector3 new_target = tube.position;
while (max_stretch-- > 0) {
new_target += direction_vector;
if (!is_valid_grid_position(new_target) || get_grid(new_target) != 0)
break;
set_grid(new_target, 1);
tube.target_position = new_target;
}
tube.progress_to_target = 0.;
}
ErrorOr<void> Tubes::create_buffer(Gfx::IntSize size)
{
m_bitmap = TRY(Gfx::Bitmap::create(Gfx::BitmapFormat::BGRx8888, size));
m_gl_context = TRY(GL::create_context(*m_bitmap));
return {};
}
u8 Tubes::get_grid(IntVector3 position)
{
return m_grid[position.z() * grid_resolution * grid_resolution + position.y() * grid_resolution + position.x()];
}
bool Tubes::is_valid_grid_position(Gfx::IntVector3 position)
{
return position.x() >= 0
&& position.x() < static_cast<int>(grid_resolution)
&& position.y() >= 0
&& position.y() < static_cast<int>(grid_resolution)
&& position.z() >= 0
&& position.z() < static_cast<int>(grid_resolution);
}
void Tubes::set_grid(IntVector3 position, u8 value)
{
m_grid[position.z() * grid_resolution * grid_resolution + position.y() * grid_resolution + position.x()] = value;
}
void Tubes::paint_event(GUI::PaintEvent& event)
{
GUI::Painter painter(*this);
painter.add_clip_rect(event.rect());
painter.blit(rect().location(), *m_bitmap, m_bitmap->rect());
}
void Tubes::reset_tubes()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Random rotation
glMatrixMode(GL_PROJECTION);
glPopMatrix();
glPushMatrix();
glRotated((random_double() - .5) * 2 * rotation_range, 0., 1., 0.);
glMatrixMode(GL_MODELVIEW);
// Clear grid
m_grid.fill_with(0);
// Create new set of tubes
auto free_grid_position = [&]() {
for (;;) {
IntVector3 position = {
random_int(0, grid_resolution - 1),
random_int(0, grid_resolution - 1),
random_int(0, grid_resolution - 1),
};
if (get_grid(position) != 0)
continue;
return position;
}
};
m_tubes.clear_with_capacity();
int tube_count = random_int(tube_minimum_count, tube_maximum_count);
while (tube_count-- > 0) {
Tube new_tube = {
.color = {
random_double(),
random_double(),
random_double(),
},
.position = free_grid_position(),
};
choose_new_direction_for_tube(new_tube);
m_tubes.append(new_tube);
set_grid(new_tube.position, 1);
}
}
void Tubes::setup_view()
{
glClearColor(0.f, 0.f, 0.f, 1.f);
glMatrixMode(GL_PROJECTION);
double const zoom = .25;
auto const half_aspect_ratio = static_cast<double>(m_bitmap->width()) / m_bitmap->height() * zoom;
glFrustum(-half_aspect_ratio, half_aspect_ratio, -zoom, zoom, .5, 10.);
glTranslated(0., 0., -2.);
glPushMatrix();
glMatrixMode(GL_MODELVIEW);
// Set up lighting
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
GLfloat light_ambient[] { .0f, .0f, .0f, 1.f };
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
GLfloat light_diffuse[] { 1.f, 1.f, 1.f, 1.f };
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
GLfloat light_specular[] { 1.f, 1.f, 1.f, 1.f };
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
GLfloat light_position[] { .5f, 1.f, .5f, 0.f };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
GLfloat mat_specular[] { 1.f, 1.f, 1.f, 1.f };
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialf(GL_FRONT, GL_SHININESS, 8.f);
// Adapt the vertex color as ambient and diffuse colors
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_AMBIENT_AND_DIFFUSE);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glEnable(GL_NORMALIZE);
glShadeModel(GL_SMOOTH);
}
void Tubes::timer_event(Core::TimerEvent&)
{
update_tubes();
m_gl_context->present();
repaint();
}
void Tubes::update_tubes()
{
if (++m_ticks % reset_every_ticks == 0)
reset_tubes();
double const primitive_size = 2.; // our tubes and spheres are 1 in diameter, so object size is 2
double const grid_width = 2.;
double const grid_scale = 1. / grid_resolution;
double const primitive_scale = 1. / primitive_size;
double const tube_length_scale = tube_movement_per_tick * primitive_size;
double const tube_thickness_scale = tube_relative_thickness * primitive_scale;
for (auto& tube : m_tubes) {
if (!tube.active)
continue;
glColor3d(tube.color.x(), tube.color.y(), tube.color.z());
glPushMatrix();
auto pos = tube.position;
glTranslated(
pos.x() * grid_scale * grid_width - (grid_width / 2.),
pos.y() * grid_scale * grid_width - (grid_width / 2.),
pos.z() * grid_scale * grid_width - (grid_width / 2.));
glScaled(grid_scale, grid_scale, grid_scale);
// Draw sphere if we're at the start or a corner
if (tube.progress_to_target == 0.) {
glPushMatrix();
glScaled(tube_thickness_scale, tube_thickness_scale, tube_thickness_scale);
draw_sphere();
glPopMatrix();
}
// Draw tube at the current position
glPushMatrix();
auto direction_vector = vector_for_direction(tube.direction);
auto distance_to_target = (tube.target_position - tube.position).length<double>();
auto movement_magnitude = tube.progress_to_target * (distance_to_target - tube_movement_per_tick) / distance_to_target * grid_width;
glTranslated(
direction_vector.x() * movement_magnitude,
direction_vector.y() * movement_magnitude,
direction_vector.z() * movement_magnitude);
auto tube_rotation = tube_rotation_for_direction(tube.direction);
glRotated(tube_rotation.w(), tube_rotation.x(), tube_rotation.y(), tube_rotation.z());
glScaled(tube_thickness_scale, tube_thickness_scale, primitive_scale * tube_length_scale);
draw_tube();
glPopMatrix();
// Move towards target
if (tube.progress_to_target >= distance_to_target) {
tube.position = tube.target_position;
choose_new_direction_for_tube(tube);
} else {
tube.progress_to_target = min(tube.progress_to_target + tube_movement_per_tick, distance_to_target);
}
glPopMatrix();
}
}