serenity/Userland/Libraries/LibJS/Parser.cpp
Gal Horowitz 0e10dec324 LibJS: Parse only AssignmentExpressions in ComputedPropertyNames
The property name in an object literal can either be a literal or a
computed name, in which case any AssignmentExpression can be used, we
now only parse AssignmentExpression instead of the previous incorrect
behaviour which allowed any Expression (Specifically, comma
expressions).
2021-06-11 17:25:14 +01:00

2280 lines
95 KiB
C++

/*
* Copyright (c) 2020, Stephan Unverwerth <s.unverwerth@serenityos.org>
* Copyright (c) 2020-2021, Linus Groh <linusg@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Parser.h"
#include <AK/HashTable.h>
#include <AK/ScopeGuard.h>
#include <AK/StdLibExtras.h>
#include <AK/TemporaryChange.h>
#include <ctype.h>
namespace JS {
static bool statement_is_use_strict_directive(NonnullRefPtr<Statement> statement)
{
if (!is<ExpressionStatement>(*statement))
return false;
auto& expression_statement = static_cast<ExpressionStatement&>(*statement);
auto& expression = expression_statement.expression();
if (!is<StringLiteral>(expression))
return false;
return static_cast<const StringLiteral&>(expression).is_use_strict_directive();
}
class ScopePusher {
public:
enum Type {
Var = 1,
Let = 2,
Function = 3,
};
ScopePusher(Parser& parser, unsigned mask)
: m_parser(parser)
, m_mask(mask)
{
if (m_mask & Var)
m_parser.m_parser_state.m_var_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
if (m_mask & Let)
m_parser.m_parser_state.m_let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
if (m_mask & Function)
m_parser.m_parser_state.m_function_scopes.append(NonnullRefPtrVector<FunctionDeclaration>());
}
~ScopePusher()
{
if (m_mask & Var)
m_parser.m_parser_state.m_var_scopes.take_last();
if (m_mask & Let)
m_parser.m_parser_state.m_let_scopes.take_last();
if (m_mask & Function)
m_parser.m_parser_state.m_function_scopes.take_last();
}
Parser& m_parser;
unsigned m_mask { 0 };
};
class OperatorPrecedenceTable {
public:
constexpr OperatorPrecedenceTable()
: m_token_precedence()
{
for (size_t i = 0; i < array_size(m_operator_precedence); ++i) {
auto& op = m_operator_precedence[i];
m_token_precedence[static_cast<size_t>(op.token)] = op.precedence;
}
}
constexpr int get(TokenType token) const
{
int p = m_token_precedence[static_cast<size_t>(token)];
if (p == 0) {
warnln("Internal Error: No precedence for operator {}", Token::name(token));
VERIFY_NOT_REACHED();
return -1;
}
return p;
}
private:
int m_token_precedence[cs_num_of_js_tokens];
struct OperatorPrecedence {
TokenType token;
int precedence;
};
// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Operator_Precedence
static constexpr const OperatorPrecedence m_operator_precedence[] = {
{ TokenType::Period, 20 },
{ TokenType::BracketOpen, 20 },
{ TokenType::ParenOpen, 20 },
{ TokenType::QuestionMarkPeriod, 20 },
{ TokenType::New, 19 },
{ TokenType::PlusPlus, 18 },
{ TokenType::MinusMinus, 18 },
{ TokenType::ExclamationMark, 17 },
{ TokenType::Tilde, 17 },
{ TokenType::Typeof, 17 },
{ TokenType::Void, 17 },
{ TokenType::Delete, 17 },
{ TokenType::Await, 17 },
{ TokenType::DoubleAsterisk, 16 },
{ TokenType::Asterisk, 15 },
{ TokenType::Slash, 15 },
{ TokenType::Percent, 15 },
{ TokenType::Plus, 14 },
{ TokenType::Minus, 14 },
{ TokenType::ShiftLeft, 13 },
{ TokenType::ShiftRight, 13 },
{ TokenType::UnsignedShiftRight, 13 },
{ TokenType::LessThan, 12 },
{ TokenType::LessThanEquals, 12 },
{ TokenType::GreaterThan, 12 },
{ TokenType::GreaterThanEquals, 12 },
{ TokenType::In, 12 },
{ TokenType::Instanceof, 12 },
{ TokenType::EqualsEquals, 11 },
{ TokenType::ExclamationMarkEquals, 11 },
{ TokenType::EqualsEqualsEquals, 11 },
{ TokenType::ExclamationMarkEqualsEquals, 11 },
{ TokenType::Ampersand, 10 },
{ TokenType::Caret, 9 },
{ TokenType::Pipe, 8 },
{ TokenType::DoubleQuestionMark, 7 },
{ TokenType::DoubleAmpersand, 6 },
{ TokenType::DoublePipe, 5 },
{ TokenType::QuestionMark, 4 },
{ TokenType::Equals, 3 },
{ TokenType::PlusEquals, 3 },
{ TokenType::MinusEquals, 3 },
{ TokenType::DoubleAsteriskEquals, 3 },
{ TokenType::AsteriskEquals, 3 },
{ TokenType::SlashEquals, 3 },
{ TokenType::PercentEquals, 3 },
{ TokenType::ShiftLeftEquals, 3 },
{ TokenType::ShiftRightEquals, 3 },
{ TokenType::UnsignedShiftRightEquals, 3 },
{ TokenType::AmpersandEquals, 3 },
{ TokenType::CaretEquals, 3 },
{ TokenType::PipeEquals, 3 },
{ TokenType::DoubleAmpersandEquals, 3 },
{ TokenType::DoublePipeEquals, 3 },
{ TokenType::DoubleQuestionMarkEquals, 3 },
{ TokenType::Yield, 2 },
{ TokenType::Comma, 1 },
};
};
constexpr OperatorPrecedenceTable g_operator_precedence;
Parser::ParserState::ParserState(Lexer lexer)
: m_lexer(move(lexer))
, m_current_token(m_lexer.next())
{
}
Parser::Parser(Lexer lexer)
: m_parser_state(move(lexer))
{
}
Associativity Parser::operator_associativity(TokenType type) const
{
switch (type) {
case TokenType::Period:
case TokenType::BracketOpen:
case TokenType::ParenOpen:
case TokenType::QuestionMarkPeriod:
case TokenType::Asterisk:
case TokenType::Slash:
case TokenType::Percent:
case TokenType::Plus:
case TokenType::Minus:
case TokenType::ShiftLeft:
case TokenType::ShiftRight:
case TokenType::UnsignedShiftRight:
case TokenType::LessThan:
case TokenType::LessThanEquals:
case TokenType::GreaterThan:
case TokenType::GreaterThanEquals:
case TokenType::In:
case TokenType::Instanceof:
case TokenType::EqualsEquals:
case TokenType::ExclamationMarkEquals:
case TokenType::EqualsEqualsEquals:
case TokenType::ExclamationMarkEqualsEquals:
case TokenType::Typeof:
case TokenType::Void:
case TokenType::Delete:
case TokenType::Ampersand:
case TokenType::Caret:
case TokenType::Pipe:
case TokenType::DoubleQuestionMark:
case TokenType::DoubleAmpersand:
case TokenType::DoublePipe:
case TokenType::Comma:
return Associativity::Left;
default:
return Associativity::Right;
}
}
NonnullRefPtr<Program> Parser::parse_program()
{
auto rule_start = push_start();
ScopePusher scope(*this, ScopePusher::Var | ScopePusher::Let | ScopePusher::Function);
auto program = adopt_ref(*new Program({ m_filename, rule_start.position(), position() }));
bool first = true;
while (!done()) {
if (match_declaration()) {
program->append(parse_declaration());
} else if (match_statement()) {
auto statement = parse_statement();
program->append(statement);
if (statement_is_use_strict_directive(statement)) {
if (first) {
program->set_strict_mode();
m_parser_state.m_strict_mode = true;
}
if (m_parser_state.m_string_legacy_octal_escape_sequence_in_scope)
syntax_error("Octal escape sequence in string literal not allowed in strict mode");
}
} else {
expected("statement or declaration");
consume();
}
first = false;
}
if (m_parser_state.m_var_scopes.size() == 1) {
program->add_variables(m_parser_state.m_var_scopes.last());
program->add_variables(m_parser_state.m_let_scopes.last());
program->add_functions(m_parser_state.m_function_scopes.last());
} else {
syntax_error("Unclosed scope");
}
program->source_range().end = position();
return program;
}
NonnullRefPtr<Declaration> Parser::parse_declaration()
{
auto rule_start = push_start();
switch (m_parser_state.m_current_token.type()) {
case TokenType::Class:
return parse_class_declaration();
case TokenType::Function: {
auto declaration = parse_function_node<FunctionDeclaration>();
m_parser_state.m_function_scopes.last().append(declaration);
return declaration;
}
case TokenType::Let:
case TokenType::Const:
return parse_variable_declaration();
default:
expected("declaration");
consume();
return create_ast_node<ErrorDeclaration>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<Statement> Parser::parse_statement()
{
auto rule_start = push_start();
switch (m_parser_state.m_current_token.type()) {
case TokenType::CurlyOpen:
return parse_block_statement();
case TokenType::Return:
return parse_return_statement();
case TokenType::Var:
return parse_variable_declaration();
case TokenType::For:
return parse_for_statement();
case TokenType::If:
return parse_if_statement();
case TokenType::Throw:
return parse_throw_statement();
case TokenType::Try:
return parse_try_statement();
case TokenType::Break:
return parse_break_statement();
case TokenType::Continue:
return parse_continue_statement();
case TokenType::Switch:
return parse_switch_statement();
case TokenType::Do:
return parse_do_while_statement();
case TokenType::While:
return parse_while_statement();
case TokenType::With:
if (m_parser_state.m_strict_mode)
syntax_error("'with' statement not allowed in strict mode");
return parse_with_statement();
case TokenType::Debugger:
return parse_debugger_statement();
case TokenType::Semicolon:
consume();
return create_ast_node<EmptyStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
default:
if (match(TokenType::Identifier)) {
auto result = try_parse_labelled_statement();
if (!result.is_null())
return result.release_nonnull();
}
if (match_expression()) {
if (match(TokenType::Function))
syntax_error("Function declaration not allowed in single-statement context");
auto expr = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ExpressionStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expr));
}
expected("statement");
consume();
return create_ast_node<ErrorStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
}
RefPtr<FunctionExpression> Parser::try_parse_arrow_function_expression(bool expect_parens)
{
save_state();
m_parser_state.m_var_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
Vector<FunctionNode::Parameter> parameters;
i32 function_length = -1;
if (expect_parens) {
// We have parens around the function parameters and can re-use the same parsing
// logic used for regular functions: multiple parameters, default values, rest
// parameter, maybe a trailing comma. If we have a new syntax error afterwards we
// check if it's about a wrong token (something like duplicate parameter name must
// not abort), know parsing failed and rollback the parser state.
auto previous_syntax_errors = m_parser_state.m_errors.size();
parameters = parse_formal_parameters(function_length, FunctionNodeParseOptions::IsArrowFunction);
if (m_parser_state.m_errors.size() > previous_syntax_errors && m_parser_state.m_errors[previous_syntax_errors].message.starts_with("Unexpected token"))
return nullptr;
if (!match(TokenType::ParenClose))
return nullptr;
consume();
} else {
// No parens - this must be an identifier followed by arrow. That's it.
if (!match(TokenType::Identifier))
return nullptr;
parameters.append({ FlyString { consume().value() }, {} });
}
// If there's a newline between the closing paren and arrow it's not a valid arrow function,
// ASI should kick in instead (it'll then fail with "Unexpected token Arrow")
if (m_parser_state.m_current_token.trivia_contains_line_terminator())
return nullptr;
if (!match(TokenType::Arrow))
return nullptr;
consume();
if (function_length == -1)
function_length = parameters.size();
auto old_labels_in_scope = move(m_parser_state.m_labels_in_scope);
ScopeGuard guard([&]() {
m_parser_state.m_labels_in_scope = move(old_labels_in_scope);
});
bool is_strict = false;
auto function_body_result = [&]() -> RefPtr<BlockStatement> {
TemporaryChange change(m_parser_state.m_in_arrow_function_context, true);
if (match(TokenType::CurlyOpen)) {
// Parse a function body with statements
return parse_block_statement(is_strict);
}
if (match_expression()) {
// Parse a function body which returns a single expression
// FIXME: We synthesize a block with a return statement
// for arrow function bodies which are a single expression.
// Esprima generates a single "ArrowFunctionExpression"
// with a "body" property.
auto return_expression = parse_expression(2);
auto return_block = create_ast_node<BlockStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
return_block->append<ReturnStatement>({ m_filename, rule_start.position(), position() }, move(return_expression));
return return_block;
}
// Invalid arrow function body
return nullptr;
}();
if (!function_body_result.is_null()) {
state_rollback_guard.disarm();
discard_saved_state();
auto body = function_body_result.release_nonnull();
return create_ast_node<FunctionExpression>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, "", move(body),
move(parameters), function_length, m_parser_state.m_var_scopes.take_last(), FunctionKind::Regular, is_strict, true);
}
return nullptr;
}
RefPtr<Statement> Parser::try_parse_labelled_statement()
{
save_state();
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
auto identifier = consume(TokenType::Identifier).value();
if (!match(TokenType::Colon))
return {};
consume(TokenType::Colon);
if (!match_statement())
return {};
m_parser_state.m_labels_in_scope.set(identifier);
auto statement = parse_statement();
m_parser_state.m_labels_in_scope.remove(identifier);
statement->set_label(identifier);
state_rollback_guard.disarm();
discard_saved_state();
return statement;
}
RefPtr<MetaProperty> Parser::try_parse_new_target_expression()
{
save_state();
auto rule_start = push_start();
ArmedScopeGuard state_rollback_guard = [&] {
load_state();
};
consume(TokenType::New);
if (!match(TokenType::Period))
return {};
consume();
if (!match(TokenType::Identifier))
return {};
if (consume().value() != "target")
return {};
state_rollback_guard.disarm();
discard_saved_state();
return create_ast_node<MetaProperty>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, MetaProperty::Type::NewTarget);
}
NonnullRefPtr<ClassDeclaration> Parser::parse_class_declaration()
{
auto rule_start = push_start();
return create_ast_node<ClassDeclaration>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, parse_class_expression(true));
}
NonnullRefPtr<ClassExpression> Parser::parse_class_expression(bool expect_class_name)
{
auto rule_start = push_start();
// Classes are always in strict mode.
TemporaryChange strict_mode_rollback(m_parser_state.m_strict_mode, true);
consume(TokenType::Class);
NonnullRefPtrVector<ClassMethod> methods;
RefPtr<Expression> super_class;
RefPtr<FunctionExpression> constructor;
String class_name = expect_class_name || match(TokenType::Identifier) ? consume(TokenType::Identifier).value().to_string() : "";
if (match(TokenType::Extends)) {
consume();
super_class = parse_primary_expression();
}
consume(TokenType::CurlyOpen);
while (!done() && !match(TokenType::CurlyClose)) {
RefPtr<Expression> property_key;
bool is_static = false;
bool is_constructor = false;
auto method_kind = ClassMethod::Kind::Method;
if (match(TokenType::Semicolon)) {
consume();
continue;
}
if (match_property_key()) {
StringView name;
if (match(TokenType::Identifier) && m_parser_state.m_current_token.value() == "static") {
consume();
is_static = true;
}
if (match(TokenType::Identifier)) {
auto identifier_name = m_parser_state.m_current_token.value();
if (identifier_name == "get") {
method_kind = ClassMethod::Kind::Getter;
consume();
} else if (identifier_name == "set") {
method_kind = ClassMethod::Kind::Setter;
consume();
}
}
if (match_property_key()) {
switch (m_parser_state.m_current_token.type()) {
case TokenType::Identifier:
name = consume().value();
property_key = create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, name);
break;
case TokenType::StringLiteral: {
auto string_literal = parse_string_literal(consume());
name = string_literal->value();
property_key = move(string_literal);
break;
}
default:
property_key = parse_property_key();
break;
}
} else {
expected("property key");
}
// Constructor may be a StringLiteral or an Identifier.
if (!is_static && name == "constructor") {
if (method_kind != ClassMethod::Kind::Method)
syntax_error("Class constructor may not be an accessor");
if (!constructor.is_null())
syntax_error("Classes may not have more than one constructor");
is_constructor = true;
}
}
if (match(TokenType::ParenOpen)) {
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (!super_class.is_null())
parse_options |= FunctionNodeParseOptions::AllowSuperConstructorCall;
if (method_kind == ClassMethod::Kind::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (method_kind == ClassMethod::Kind::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
if (is_constructor) {
constructor = move(function);
} else if (!property_key.is_null()) {
methods.append(create_ast_node<ClassMethod>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, property_key.release_nonnull(), move(function), method_kind, is_static));
} else {
syntax_error("No key for class method");
}
} else {
expected("ParenOpen");
consume();
}
}
consume(TokenType::CurlyClose);
if (constructor.is_null()) {
auto constructor_body = create_ast_node<BlockStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
if (!super_class.is_null()) {
// Set constructor to the result of parsing the source text
// constructor(... args){ super (...args);}
auto super_call = create_ast_node<CallExpression>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() },
create_ast_node<SuperExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }),
Vector { CallExpression::Argument { create_ast_node<Identifier>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, "args"), true } });
constructor_body->append(create_ast_node<ExpressionStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(super_call)));
constructor_body->add_variables(m_parser_state.m_var_scopes.last());
constructor = create_ast_node<FunctionExpression>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, class_name, move(constructor_body),
Vector { FunctionNode::Parameter { FlyString { "args" }, nullptr, true } }, 0, NonnullRefPtrVector<VariableDeclaration>(), FunctionKind::Regular, true);
} else {
constructor = create_ast_node<FunctionExpression>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, class_name, move(constructor_body),
Vector<FunctionNode::Parameter> {}, 0, NonnullRefPtrVector<VariableDeclaration>(), FunctionKind::Regular, true);
}
}
return create_ast_node<ClassExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(class_name), move(constructor), move(super_class), move(methods));
}
NonnullRefPtr<Expression> Parser::parse_primary_expression()
{
auto rule_start = push_start();
if (match_unary_prefixed_expression())
return parse_unary_prefixed_expression();
switch (m_parser_state.m_current_token.type()) {
case TokenType::ParenOpen: {
auto paren_position = position();
consume(TokenType::ParenOpen);
if ((match(TokenType::ParenClose) || match(TokenType::Identifier) || match(TokenType::TripleDot)) && !try_parse_arrow_function_expression_failed_at_position(paren_position)) {
auto arrow_function_result = try_parse_arrow_function_expression(true);
if (!arrow_function_result.is_null())
return arrow_function_result.release_nonnull();
set_try_parse_arrow_function_expression_failed_at_position(paren_position, true);
}
auto expression = parse_expression(0);
consume(TokenType::ParenClose);
if (is<FunctionExpression>(*expression)) {
static_cast<FunctionExpression&>(*expression).set_cannot_auto_rename();
}
return expression;
}
case TokenType::This:
consume();
return create_ast_node<ThisExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
case TokenType::Class:
return parse_class_expression(false);
case TokenType::Super:
consume();
if (!m_parser_state.m_allow_super_property_lookup)
syntax_error("'super' keyword unexpected here");
return create_ast_node<SuperExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
case TokenType::Identifier: {
read_as_identifier:;
if (!try_parse_arrow_function_expression_failed_at_position(position())) {
auto arrow_function_result = try_parse_arrow_function_expression(false);
if (!arrow_function_result.is_null())
return arrow_function_result.release_nonnull();
set_try_parse_arrow_function_expression_failed_at_position(position(), true);
}
return create_ast_node<Identifier>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().value());
}
case TokenType::NumericLiteral:
return create_ast_node<NumericLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume_and_validate_numeric_literal().double_value());
case TokenType::BigIntLiteral:
return create_ast_node<BigIntLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().value());
case TokenType::BoolLiteral:
return create_ast_node<BooleanLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().bool_value());
case TokenType::StringLiteral:
return parse_string_literal(consume());
case TokenType::NullLiteral:
consume();
return create_ast_node<NullLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
case TokenType::CurlyOpen:
return parse_object_expression();
case TokenType::Function:
return parse_function_node<FunctionExpression>();
case TokenType::BracketOpen:
return parse_array_expression();
case TokenType::RegexLiteral:
return parse_regexp_literal();
case TokenType::TemplateLiteralStart:
return parse_template_literal(false);
case TokenType::New: {
auto new_start = position();
auto new_target_result = try_parse_new_target_expression();
if (!new_target_result.is_null()) {
if (!m_parser_state.m_in_function_context)
syntax_error("'new.target' not allowed outside of a function", new_start);
return new_target_result.release_nonnull();
}
return parse_new_expression();
}
case TokenType::Yield:
if (!m_parser_state.m_in_generator_function_context)
goto read_as_identifier;
return parse_yield_expression();
default:
expected("primary expression");
consume();
return create_ast_node<ErrorExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<RegExpLiteral> Parser::parse_regexp_literal()
{
auto rule_start = push_start();
auto pattern = consume().value();
// Remove leading and trailing slash.
pattern = pattern.substring_view(1, pattern.length() - 2);
auto flags = String::empty();
if (match(TokenType::RegexFlags)) {
auto flags_start = position();
flags = consume().value();
HashTable<char> seen_flags;
for (size_t i = 0; i < flags.length(); ++i) {
auto flag = flags.substring_view(i, 1);
if (!flag.is_one_of("g", "i", "m", "s", "u", "y"))
syntax_error(String::formatted("Invalid RegExp flag '{}'", flag), Position { flags_start.line, flags_start.column + i });
if (seen_flags.contains(*flag.characters_without_null_termination()))
syntax_error(String::formatted("Repeated RegExp flag '{}'", flag), Position { flags_start.line, flags_start.column + i });
seen_flags.set(*flag.characters_without_null_termination());
}
}
return create_ast_node<RegExpLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, pattern, flags);
}
NonnullRefPtr<Expression> Parser::parse_unary_prefixed_expression()
{
auto rule_start = push_start();
auto precedence = g_operator_precedence.get(m_parser_state.m_current_token.type());
auto associativity = operator_associativity(m_parser_state.m_current_token.type());
switch (m_parser_state.m_current_token.type()) {
case TokenType::PlusPlus: {
consume();
auto rhs_start = position();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for ++foo()
if (!is<Identifier>(*rhs) && !is<MemberExpression>(*rhs))
syntax_error(String::formatted("Right-hand side of prefix increment operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start);
return create_ast_node<UpdateExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UpdateOp::Increment, move(rhs), true);
}
case TokenType::MinusMinus: {
consume();
auto rhs_start = position();
auto rhs = parse_expression(precedence, associativity);
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for --foo()
if (!is<Identifier>(*rhs) && !is<MemberExpression>(*rhs))
syntax_error(String::formatted("Right-hand side of prefix decrement operator must be identifier or member expression, got {}", rhs->class_name()), rhs_start);
return create_ast_node<UpdateExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UpdateOp::Decrement, move(rhs), true);
}
case TokenType::ExclamationMark:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Not, parse_expression(precedence, associativity));
case TokenType::Tilde:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::BitwiseNot, parse_expression(precedence, associativity));
case TokenType::Plus:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Plus, parse_expression(precedence, associativity));
case TokenType::Minus:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Minus, parse_expression(precedence, associativity));
case TokenType::Typeof:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Typeof, parse_expression(precedence, associativity));
case TokenType::Void:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Void, parse_expression(precedence, associativity));
case TokenType::Delete:
consume();
return create_ast_node<UnaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UnaryOp::Delete, parse_expression(precedence, associativity));
default:
expected("primary expression");
consume();
return create_ast_node<ErrorExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<Expression> Parser::parse_property_key()
{
auto rule_start = push_start();
if (match(TokenType::StringLiteral)) {
return parse_string_literal(consume());
} else if (match(TokenType::NumericLiteral)) {
return create_ast_node<NumericLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().double_value());
} else if (match(TokenType::BigIntLiteral)) {
return create_ast_node<BigIntLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().value());
} else if (match(TokenType::BracketOpen)) {
consume(TokenType::BracketOpen);
auto result = parse_expression(2);
consume(TokenType::BracketClose);
return result;
} else {
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().value());
}
}
NonnullRefPtr<ObjectExpression> Parser::parse_object_expression()
{
auto rule_start = push_start();
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<ObjectProperty> properties;
ObjectProperty::Type property_type;
auto skip_to_next_property = [&] {
while (!done() && !match(TokenType::Comma) && !match(TokenType::CurlyOpen))
consume();
};
while (!done() && !match(TokenType::CurlyClose)) {
property_type = ObjectProperty::Type::KeyValue;
RefPtr<Expression> property_name;
RefPtr<Expression> property_value;
if (match(TokenType::TripleDot)) {
consume();
property_name = parse_expression(4);
properties.append(create_ast_node<ObjectProperty>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, *property_name, nullptr, ObjectProperty::Type::Spread, false));
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
continue;
}
if (match(TokenType::Identifier)) {
auto identifier = consume().value();
if (identifier == "get" && match_property_key()) {
property_type = ObjectProperty::Type::Getter;
property_name = parse_property_key();
} else if (identifier == "set" && match_property_key()) {
property_type = ObjectProperty::Type::Setter;
property_name = parse_property_key();
} else {
property_name = create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, identifier);
property_value = create_ast_node<Identifier>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, identifier);
}
} else {
property_name = parse_property_key();
}
if (property_type == ObjectProperty::Type::Getter || property_type == ObjectProperty::Type::Setter) {
if (!match(TokenType::ParenOpen)) {
syntax_error("Expected '(' for object getter or setter property");
skip_to_next_property();
continue;
}
}
if (match(TokenType::ParenOpen)) {
VERIFY(property_name);
u8 parse_options = FunctionNodeParseOptions::AllowSuperPropertyLookup;
if (property_type == ObjectProperty::Type::Getter)
parse_options |= FunctionNodeParseOptions::IsGetterFunction;
if (property_type == ObjectProperty::Type::Setter)
parse_options |= FunctionNodeParseOptions::IsSetterFunction;
auto function = parse_function_node<FunctionExpression>(parse_options);
properties.append(create_ast_node<ObjectProperty>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, *property_name, function, property_type, true));
} else if (match(TokenType::Colon)) {
if (!property_name) {
syntax_error("Expected a property name");
skip_to_next_property();
continue;
}
consume();
properties.append(create_ast_node<ObjectProperty>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, *property_name, parse_expression(2), property_type, false));
} else if (property_name && property_value) {
properties.append(create_ast_node<ObjectProperty>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, *property_name, *property_value, property_type, false));
} else {
syntax_error("Expected a property");
skip_to_next_property();
continue;
}
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::CurlyClose);
return create_ast_node<ObjectExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, properties);
}
NonnullRefPtr<ArrayExpression> Parser::parse_array_expression()
{
auto rule_start = push_start();
consume(TokenType::BracketOpen);
Vector<RefPtr<Expression>> elements;
while (match_expression() || match(TokenType::TripleDot) || match(TokenType::Comma)) {
RefPtr<Expression> expression;
if (match(TokenType::TripleDot)) {
consume(TokenType::TripleDot);
expression = create_ast_node<SpreadExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, parse_expression(2));
} else if (match_expression()) {
expression = parse_expression(2);
}
elements.append(expression);
if (!match(TokenType::Comma))
break;
consume(TokenType::Comma);
}
consume(TokenType::BracketClose);
return create_ast_node<ArrayExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(elements));
}
NonnullRefPtr<StringLiteral> Parser::parse_string_literal(const Token& token, bool in_template_literal)
{
auto rule_start = push_start();
auto status = Token::StringValueStatus::Ok;
auto string = token.string_value(status);
if (status != Token::StringValueStatus::Ok) {
String message;
if (status == Token::StringValueStatus::LegacyOctalEscapeSequence) {
m_parser_state.m_string_legacy_octal_escape_sequence_in_scope = true;
if (in_template_literal)
message = "Octal escape sequence not allowed in template literal";
else if (m_parser_state.m_strict_mode)
message = "Octal escape sequence in string literal not allowed in strict mode";
} else if (status == Token::StringValueStatus::MalformedHexEscape || status == Token::StringValueStatus::MalformedUnicodeEscape) {
auto type = status == Token::StringValueStatus::MalformedUnicodeEscape ? "unicode" : "hexadecimal";
message = String::formatted("Malformed {} escape sequence", type);
} else if (status == Token::StringValueStatus::UnicodeEscapeOverflow) {
message = "Unicode code_point must not be greater than 0x10ffff in escape sequence";
} else {
VERIFY_NOT_REACHED();
}
if (!message.is_empty())
syntax_error(message, Position { token.line_number(), token.line_column() });
}
auto is_use_strict_directive = !in_template_literal && (token.value() == "'use strict'" || token.value() == "\"use strict\"");
return create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, string, is_use_strict_directive);
}
NonnullRefPtr<TemplateLiteral> Parser::parse_template_literal(bool is_tagged)
{
auto rule_start = push_start();
consume(TokenType::TemplateLiteralStart);
NonnullRefPtrVector<Expression> expressions;
NonnullRefPtrVector<Expression> raw_strings;
auto append_empty_string = [this, &rule_start, &expressions, &raw_strings, is_tagged]() {
auto string_literal = create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, "");
expressions.append(string_literal);
if (is_tagged)
raw_strings.append(string_literal);
};
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
while (!done() && !match(TokenType::TemplateLiteralEnd) && !match(TokenType::UnterminatedTemplateLiteral)) {
if (match(TokenType::TemplateLiteralString)) {
auto token = consume();
expressions.append(parse_string_literal(token, true));
if (is_tagged)
raw_strings.append(create_ast_node<StringLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, token.value()));
} else if (match(TokenType::TemplateLiteralExprStart)) {
consume(TokenType::TemplateLiteralExprStart);
if (match(TokenType::TemplateLiteralExprEnd)) {
syntax_error("Empty template literal expression block");
return create_ast_node<TemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, expressions);
}
expressions.append(parse_expression(0));
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
return create_ast_node<TemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, expressions);
}
consume(TokenType::TemplateLiteralExprEnd);
if (!match(TokenType::TemplateLiteralString))
append_empty_string();
} else {
expected("Template literal string or expression");
break;
}
}
if (match(TokenType::UnterminatedTemplateLiteral)) {
syntax_error("Unterminated template literal");
} else {
consume(TokenType::TemplateLiteralEnd);
}
if (is_tagged)
return create_ast_node<TemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, expressions, raw_strings);
return create_ast_node<TemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, expressions);
}
NonnullRefPtr<Expression> Parser::parse_expression(int min_precedence, Associativity associativity, const Vector<TokenType>& forbidden)
{
auto rule_start = push_start();
auto expression = parse_primary_expression();
while (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expression), move(template_literal));
}
while (match_secondary_expression(forbidden)) {
int new_precedence = g_operator_precedence.get(m_parser_state.m_current_token.type());
if (new_precedence < min_precedence)
break;
if (new_precedence == min_precedence && associativity == Associativity::Left)
break;
Associativity new_associativity = operator_associativity(m_parser_state.m_current_token.type());
expression = parse_secondary_expression(move(expression), new_precedence, new_associativity);
while (match(TokenType::TemplateLiteralStart)) {
auto template_literal = parse_template_literal(true);
expression = create_ast_node<TaggedTemplateLiteral>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expression), move(template_literal));
}
}
if (match(TokenType::Comma) && min_precedence <= 1) {
NonnullRefPtrVector<Expression> expressions;
expressions.append(expression);
while (match(TokenType::Comma)) {
consume();
expressions.append(parse_expression(2));
}
expression = create_ast_node<SequenceExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expressions));
}
return expression;
}
NonnullRefPtr<Expression> Parser::parse_secondary_expression(NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
auto rule_start = push_start();
switch (m_parser_state.m_current_token.type()) {
case TokenType::Plus:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Addition, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PlusEquals:
return parse_assignment_expression(AssignmentOp::AdditionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Minus:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Subtraction, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::MinusEquals:
return parse_assignment_expression(AssignmentOp::SubtractionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Asterisk:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Multiplication, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AsteriskEquals:
return parse_assignment_expression(AssignmentOp::MultiplicationAssignment, move(lhs), min_precedence, associativity);
case TokenType::Slash:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Division, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::SlashEquals:
return parse_assignment_expression(AssignmentOp::DivisionAssignment, move(lhs), min_precedence, associativity);
case TokenType::Percent:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Modulo, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PercentEquals:
return parse_assignment_expression(AssignmentOp::ModuloAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleAsterisk:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::Exponentiation, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAsteriskEquals:
return parse_assignment_expression(AssignmentOp::ExponentiationAssignment, move(lhs), min_precedence, associativity);
case TokenType::GreaterThan:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::GreaterThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::GreaterThanEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::GreaterThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThan:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::LessThan, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::LessThanEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::LessThanEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::TypedEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::TypedInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::EqualsEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::AbstractEquals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ExclamationMarkEquals:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::AbstractInequals, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::In:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::In, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Instanceof:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::InstanceOf, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::Ampersand:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseAnd, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::AmpersandEquals:
return parse_assignment_expression(AssignmentOp::BitwiseAndAssignment, move(lhs), min_precedence, associativity);
case TokenType::Pipe:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseOr, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::PipeEquals:
return parse_assignment_expression(AssignmentOp::BitwiseOrAssignment, move(lhs), min_precedence, associativity);
case TokenType::Caret:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::BitwiseXor, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::CaretEquals:
return parse_assignment_expression(AssignmentOp::BitwiseXorAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftLeft:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::LeftShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftLeftEquals:
return parse_assignment_expression(AssignmentOp::LeftShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ShiftRight:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::RightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::ShiftRightEquals:
return parse_assignment_expression(AssignmentOp::RightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::UnsignedShiftRight:
consume();
return create_ast_node<BinaryExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, BinaryOp::UnsignedRightShift, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::UnsignedShiftRightEquals:
return parse_assignment_expression(AssignmentOp::UnsignedRightShiftAssignment, move(lhs), min_precedence, associativity);
case TokenType::ParenOpen:
return parse_call_expression(move(lhs));
case TokenType::Equals:
return parse_assignment_expression(AssignmentOp::Assignment, move(lhs), min_precedence, associativity);
case TokenType::Period:
consume();
if (!match_identifier_name())
expected("IdentifierName");
return create_ast_node<MemberExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(lhs), create_ast_node<Identifier>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, consume().value()));
case TokenType::BracketOpen: {
consume(TokenType::BracketOpen);
auto expression = create_ast_node<MemberExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(lhs), parse_expression(0), true);
consume(TokenType::BracketClose);
return expression;
}
case TokenType::PlusPlus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()++
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs))
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
consume();
return create_ast_node<UpdateExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UpdateOp::Increment, move(lhs));
case TokenType::MinusMinus:
// FIXME: Apparently for functions this should also not be enforced on a parser level,
// other engines throw ReferenceError for foo()--
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs))
syntax_error(String::formatted("Left-hand side of postfix increment operator must be identifier or member expression, got {}", lhs->class_name()));
consume();
return create_ast_node<UpdateExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, UpdateOp::Decrement, move(lhs));
case TokenType::DoubleAmpersand:
consume();
return create_ast_node<LogicalExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, LogicalOp::And, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleAmpersandEquals:
return parse_assignment_expression(AssignmentOp::AndAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoublePipe:
consume();
return create_ast_node<LogicalExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, LogicalOp::Or, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoublePipeEquals:
return parse_assignment_expression(AssignmentOp::OrAssignment, move(lhs), min_precedence, associativity);
case TokenType::DoubleQuestionMark:
consume();
return create_ast_node<LogicalExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, LogicalOp::NullishCoalescing, move(lhs), parse_expression(min_precedence, associativity));
case TokenType::DoubleQuestionMarkEquals:
return parse_assignment_expression(AssignmentOp::NullishAssignment, move(lhs), min_precedence, associativity);
case TokenType::QuestionMark:
return parse_conditional_expression(move(lhs));
default:
expected("secondary expression");
consume();
return create_ast_node<ErrorExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
}
NonnullRefPtr<AssignmentExpression> Parser::parse_assignment_expression(AssignmentOp assignment_op, NonnullRefPtr<Expression> lhs, int min_precedence, Associativity associativity)
{
auto rule_start = push_start();
VERIFY(match(TokenType::Equals)
|| match(TokenType::PlusEquals)
|| match(TokenType::MinusEquals)
|| match(TokenType::AsteriskEquals)
|| match(TokenType::SlashEquals)
|| match(TokenType::PercentEquals)
|| match(TokenType::DoubleAsteriskEquals)
|| match(TokenType::AmpersandEquals)
|| match(TokenType::PipeEquals)
|| match(TokenType::CaretEquals)
|| match(TokenType::ShiftLeftEquals)
|| match(TokenType::ShiftRightEquals)
|| match(TokenType::UnsignedShiftRightEquals)
|| match(TokenType::DoubleAmpersandEquals)
|| match(TokenType::DoublePipeEquals)
|| match(TokenType::DoubleQuestionMarkEquals));
consume();
if (!is<Identifier>(*lhs) && !is<MemberExpression>(*lhs) && !is<CallExpression>(*lhs)) {
syntax_error("Invalid left-hand side in assignment");
} else if (m_parser_state.m_strict_mode && is<Identifier>(*lhs)) {
auto name = static_cast<const Identifier&>(*lhs).string();
if (name == "eval" || name == "arguments")
syntax_error(String::formatted("'{}' cannot be assigned to in strict mode code", name));
} else if (m_parser_state.m_strict_mode && is<CallExpression>(*lhs)) {
syntax_error("Cannot assign to function call");
}
auto rhs = parse_expression(min_precedence, associativity);
if (assignment_op == AssignmentOp::Assignment && is<FunctionExpression>(*rhs)) {
auto ident = lhs;
if (is<MemberExpression>(*lhs)) {
ident = static_cast<MemberExpression&>(*lhs).property();
}
if (is<Identifier>(*ident))
static_cast<FunctionExpression&>(*rhs).set_name_if_possible(static_cast<Identifier&>(*ident).string());
}
return create_ast_node<AssignmentExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, assignment_op, move(lhs), move(rhs));
}
NonnullRefPtr<CallExpression> Parser::parse_call_expression(NonnullRefPtr<Expression> lhs)
{
auto rule_start = push_start();
if (!m_parser_state.m_allow_super_constructor_call && is<SuperExpression>(*lhs))
syntax_error("'super' keyword unexpected here");
consume(TokenType::ParenOpen);
Vector<CallExpression::Argument> arguments;
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
return create_ast_node<CallExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(lhs), move(arguments));
}
NonnullRefPtr<NewExpression> Parser::parse_new_expression()
{
auto rule_start = push_start();
consume(TokenType::New);
auto callee = parse_expression(g_operator_precedence.get(TokenType::New), Associativity::Right, { TokenType::ParenOpen });
Vector<CallExpression::Argument> arguments;
if (match(TokenType::ParenOpen)) {
consume(TokenType::ParenOpen);
while (match_expression() || match(TokenType::TripleDot)) {
if (match(TokenType::TripleDot)) {
consume();
arguments.append({ parse_expression(2), true });
} else {
arguments.append({ parse_expression(2), false });
}
if (!match(TokenType::Comma))
break;
consume();
}
consume(TokenType::ParenClose);
}
return create_ast_node<NewExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(callee), move(arguments));
}
NonnullRefPtr<YieldExpression> Parser::parse_yield_expression()
{
auto rule_start = push_start();
consume(TokenType::Yield);
RefPtr<Expression> argument;
if (match_expression())
argument = parse_expression(0);
return create_ast_node<YieldExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(argument));
}
NonnullRefPtr<ReturnStatement> Parser::parse_return_statement()
{
auto rule_start = push_start();
if (!m_parser_state.m_in_function_context && !m_parser_state.m_in_arrow_function_context)
syntax_error("'return' not allowed outside of a function");
consume(TokenType::Return);
// Automatic semicolon insertion: terminate statement when return is followed by newline
if (m_parser_state.m_current_token.trivia_contains_line_terminator())
return create_ast_node<ReturnStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, nullptr);
if (match_expression()) {
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expression));
}
consume_or_insert_semicolon();
return create_ast_node<ReturnStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, nullptr);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement()
{
auto rule_start = push_start();
bool dummy = false;
return parse_block_statement(dummy);
}
NonnullRefPtr<BlockStatement> Parser::parse_block_statement(bool& is_strict)
{
auto rule_start = push_start();
ScopePusher scope(*this, ScopePusher::Let);
auto block = create_ast_node<BlockStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
consume(TokenType::CurlyOpen);
bool first = true;
bool initial_strict_mode_state = m_parser_state.m_strict_mode;
if (initial_strict_mode_state)
is_strict = true;
while (!done() && !match(TokenType::CurlyClose)) {
if (match_declaration()) {
block->append(parse_declaration());
} else if (match_statement()) {
auto statement = parse_statement();
block->append(statement);
if (statement_is_use_strict_directive(statement)) {
if (first && !initial_strict_mode_state) {
is_strict = true;
m_parser_state.m_strict_mode = true;
}
if (m_parser_state.m_string_legacy_octal_escape_sequence_in_scope)
syntax_error("Octal escape sequence in string literal not allowed in strict mode");
}
} else {
expected("statement or declaration");
consume();
}
first = false;
}
m_parser_state.m_strict_mode = initial_strict_mode_state;
m_parser_state.m_string_legacy_octal_escape_sequence_in_scope = false;
consume(TokenType::CurlyClose);
block->add_variables(m_parser_state.m_let_scopes.last());
block->add_functions(m_parser_state.m_function_scopes.last());
return block;
}
template<typename FunctionNodeType>
NonnullRefPtr<FunctionNodeType> Parser::parse_function_node(u8 parse_options)
{
auto rule_start = push_start();
VERIFY(!(parse_options & FunctionNodeParseOptions::IsGetterFunction && parse_options & FunctionNodeParseOptions::IsSetterFunction));
TemporaryChange super_property_access_rollback(m_parser_state.m_allow_super_property_lookup, !!(parse_options & FunctionNodeParseOptions::AllowSuperPropertyLookup));
TemporaryChange super_constructor_call_rollback(m_parser_state.m_allow_super_constructor_call, !!(parse_options & FunctionNodeParseOptions::AllowSuperConstructorCall));
ScopePusher scope(*this, ScopePusher::Var | ScopePusher::Function);
auto is_generator = false;
String name;
if (parse_options & FunctionNodeParseOptions::CheckForFunctionAndName) {
consume(TokenType::Function);
is_generator = match(TokenType::Asterisk);
if (is_generator)
consume(TokenType::Asterisk);
if (FunctionNodeType::must_have_name() || match(TokenType::Identifier))
name = consume(TokenType::Identifier).value();
}
consume(TokenType::ParenOpen);
i32 function_length = -1;
auto parameters = parse_formal_parameters(function_length, parse_options);
consume(TokenType::ParenClose);
if (function_length == -1)
function_length = parameters.size();
TemporaryChange change(m_parser_state.m_in_function_context, true);
TemporaryChange generator_change(m_parser_state.m_in_generator_function_context, m_parser_state.m_in_generator_function_context || is_generator);
auto old_labels_in_scope = move(m_parser_state.m_labels_in_scope);
ScopeGuard guard([&]() {
m_parser_state.m_labels_in_scope = move(old_labels_in_scope);
});
bool is_strict = false;
auto body = parse_block_statement(is_strict);
body->add_variables(m_parser_state.m_var_scopes.last());
body->add_functions(m_parser_state.m_function_scopes.last());
return create_ast_node<FunctionNodeType>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() },
name, move(body), move(parameters), function_length, NonnullRefPtrVector<VariableDeclaration>(),
is_generator ? FunctionKind::Generator : FunctionKind::Regular, is_strict);
}
Vector<FunctionNode::Parameter> Parser::parse_formal_parameters(int& function_length, u8 parse_options)
{
auto rule_start = push_start();
bool has_default_parameter = false;
bool has_rest_parameter = false;
Vector<FunctionNode::Parameter> parameters;
auto consume_identifier_or_binding_pattern = [&]() -> Variant<FlyString, NonnullRefPtr<BindingPattern>> {
if (auto pattern = parse_binding_pattern())
return pattern.release_nonnull();
auto token = consume(TokenType::Identifier);
auto parameter_name = token.value();
for (auto& parameter : parameters) {
if (auto* ptr = parameter.binding.get_pointer<FlyString>(); !ptr || parameter_name != *ptr)
continue;
String message;
if (parse_options & FunctionNodeParseOptions::IsArrowFunction)
message = String::formatted("Duplicate parameter '{}' not allowed in arrow function", parameter_name);
else if (m_parser_state.m_strict_mode)
message = String::formatted("Duplicate parameter '{}' not allowed in strict mode", parameter_name);
else if (has_default_parameter || match(TokenType::Equals))
message = String::formatted("Duplicate parameter '{}' not allowed in function with default parameter", parameter_name);
else if (has_rest_parameter)
message = String::formatted("Duplicate parameter '{}' not allowed in function with rest parameter", parameter_name);
if (!message.is_empty())
syntax_error(message, Position { token.line_number(), token.line_column() });
break;
}
return FlyString { token.value() };
};
while (match(TokenType::CurlyOpen) || match(TokenType::BracketOpen) || match(TokenType::Identifier) || match(TokenType::TripleDot)) {
if (parse_options & FunctionNodeParseOptions::IsGetterFunction)
syntax_error("Getter function must have no arguments");
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && (parameters.size() >= 1 || match(TokenType::TripleDot)))
syntax_error("Setter function must have one argument");
auto is_rest = false;
if (match(TokenType::TripleDot)) {
consume();
has_rest_parameter = true;
function_length = parameters.size();
is_rest = true;
}
auto parameter = consume_identifier_or_binding_pattern();
RefPtr<Expression> default_value;
if (match(TokenType::Equals)) {
consume();
has_default_parameter = true;
function_length = parameters.size();
default_value = parse_expression(2);
}
parameters.append({ move(parameter), default_value, is_rest });
if (match(TokenType::ParenClose))
break;
consume(TokenType::Comma);
if (is_rest)
break;
}
if (parse_options & FunctionNodeParseOptions::IsSetterFunction && parameters.is_empty())
syntax_error("Setter function must have one argument");
return parameters;
}
RefPtr<BindingPattern> Parser::parse_binding_pattern()
{
auto rule_start = push_start();
auto pattern_ptr = adopt_ref(*new BindingPattern);
auto& pattern = *pattern_ptr;
TokenType closing_token;
auto allow_named_property = false;
auto elide_extra_commas = false;
auto allow_nested_pattern = false;
if (match(TokenType::BracketOpen)) {
consume();
pattern.kind = BindingPattern::Kind::Array;
closing_token = TokenType::BracketClose;
elide_extra_commas = true;
allow_nested_pattern = true;
} else if (match(TokenType::CurlyOpen)) {
consume();
pattern.kind = BindingPattern::Kind::Object;
closing_token = TokenType::CurlyClose;
allow_named_property = true;
} else {
return {};
}
while (!match(closing_token)) {
if (elide_extra_commas && match(TokenType::Comma))
consume();
ScopeGuard consume_commas { [&] {
if (match(TokenType::Comma))
consume();
} };
auto is_rest = false;
if (match(TokenType::TripleDot)) {
consume();
is_rest = true;
}
if (match(TokenType::Identifier)) {
auto identifier_start = position();
auto token = consume(TokenType::Identifier);
auto name = create_ast_node<Identifier>(
{ m_parser_state.m_current_token.filename(), identifier_start, position() },
token.value());
if (!is_rest && allow_named_property && match(TokenType::Colon)) {
consume();
if (!match(TokenType::Identifier)) {
syntax_error("Expected a binding pattern as the value of a named element in destructuring object");
break;
} else {
auto identifier_start = position();
auto token = consume(TokenType::Identifier);
auto alias_name = create_ast_node<Identifier>(
{ m_parser_state.m_current_token.filename(), identifier_start, position() },
token.value());
pattern.properties.append(BindingPattern::BindingProperty {
.name = move(name),
.alias = move(alias_name),
.pattern = nullptr,
.initializer = nullptr,
.is_rest = false,
});
}
continue;
}
RefPtr<Expression> initializer;
if (match(TokenType::Equals)) {
consume();
initializer = parse_expression(2);
}
pattern.properties.append(BindingPattern::BindingProperty {
.name = move(name),
.alias = nullptr,
.pattern = nullptr,
.initializer = move(initializer),
.is_rest = is_rest,
});
if (is_rest)
break;
continue;
}
if (allow_nested_pattern) {
auto binding_pattern = parse_binding_pattern();
if (!binding_pattern) {
if (is_rest)
syntax_error("Expected a binding pattern after ... in destructuring list");
else
syntax_error("Expected a binding pattern or identifier in destructuring list");
break;
} else {
RefPtr<Expression> initializer;
if (match(TokenType::Equals)) {
consume();
initializer = parse_expression(2);
}
pattern.properties.append(BindingPattern::BindingProperty {
.name = nullptr,
.alias = nullptr,
.pattern = move(binding_pattern),
.initializer = move(initializer),
.is_rest = is_rest,
});
if (is_rest)
break;
continue;
}
continue;
}
break;
}
while (elide_extra_commas && match(TokenType::Comma))
consume();
consume(closing_token);
return pattern;
}
NonnullRefPtr<VariableDeclaration> Parser::parse_variable_declaration(bool for_loop_variable_declaration)
{
auto rule_start = push_start();
DeclarationKind declaration_kind;
switch (m_parser_state.m_current_token.type()) {
case TokenType::Var:
declaration_kind = DeclarationKind::Var;
break;
case TokenType::Let:
declaration_kind = DeclarationKind::Let;
break;
case TokenType::Const:
declaration_kind = DeclarationKind::Const;
break;
default:
VERIFY_NOT_REACHED();
}
consume();
NonnullRefPtrVector<VariableDeclarator> declarations;
for (;;) {
Variant<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>, Empty> target { Empty() };
if (match(TokenType::Identifier)) {
target = create_ast_node<Identifier>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() },
consume(TokenType::Identifier).value());
} else if (match(TokenType::TripleDot)) {
consume();
if (auto pattern = parse_binding_pattern())
target = pattern.release_nonnull();
else
syntax_error("Expected a binding pattern after ... in variable declaration");
} else if (auto pattern = parse_binding_pattern()) {
target = pattern.release_nonnull();
}
if (target.has<Empty>()) {
syntax_error("Expected an identifer or a binding pattern");
if (match(TokenType::Comma)) {
consume();
continue;
}
break;
}
RefPtr<Expression> init;
if (match(TokenType::Equals)) {
consume();
init = parse_expression(2);
} else if (!for_loop_variable_declaration && declaration_kind == DeclarationKind::Const) {
syntax_error("Missing initializer in 'const' variable declaration");
} else if (target.has<NonnullRefPtr<BindingPattern>>()) {
syntax_error("Missing initializer in destructuring assignment");
}
if (init && is<FunctionExpression>(*init) && target.has<NonnullRefPtr<Identifier>>()) {
static_cast<FunctionExpression&>(*init).set_name_if_possible(target.get<NonnullRefPtr<Identifier>>()->string());
}
declarations.append(create_ast_node<VariableDeclarator>(
{ m_parser_state.m_current_token.filename(), rule_start.position(), position() },
move(target).downcast<NonnullRefPtr<Identifier>, NonnullRefPtr<BindingPattern>>(),
move(init)));
if (match(TokenType::Comma)) {
consume();
continue;
}
break;
}
if (!for_loop_variable_declaration)
consume_or_insert_semicolon();
auto declaration = create_ast_node<VariableDeclaration>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, declaration_kind, move(declarations));
if (declaration_kind == DeclarationKind::Var)
m_parser_state.m_var_scopes.last().append(declaration);
else
m_parser_state.m_let_scopes.last().append(declaration);
return declaration;
}
NonnullRefPtr<ThrowStatement> Parser::parse_throw_statement()
{
auto rule_start = push_start();
consume(TokenType::Throw);
// Automatic semicolon insertion: terminate statement when throw is followed by newline
if (m_parser_state.m_current_token.trivia_contains_line_terminator()) {
syntax_error("No line break is allowed between 'throw' and its expression");
return create_ast_node<ThrowStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, create_ast_node<ErrorExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }));
}
auto expression = parse_expression(0);
consume_or_insert_semicolon();
return create_ast_node<ThrowStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(expression));
}
NonnullRefPtr<BreakStatement> Parser::parse_break_statement()
{
auto rule_start = push_start();
consume(TokenType::Break);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
} else {
if (match(TokenType::Identifier) && !m_parser_state.m_current_token.trivia_contains_line_terminator()) {
target_label = consume().value();
if (!m_parser_state.m_labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
}
if (target_label.is_null() && !m_parser_state.m_in_break_context)
syntax_error("Unlabeled 'break' not allowed outside of a loop or switch statement");
return create_ast_node<BreakStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, target_label);
}
NonnullRefPtr<ContinueStatement> Parser::parse_continue_statement()
{
auto rule_start = push_start();
if (!m_parser_state.m_in_continue_context)
syntax_error("'continue' not allow outside of a loop");
consume(TokenType::Continue);
FlyString target_label;
if (match(TokenType::Semicolon)) {
consume();
return create_ast_node<ContinueStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, target_label);
}
if (match(TokenType::Identifier) && !m_parser_state.m_current_token.trivia_contains_line_terminator()) {
target_label = consume().value();
if (!m_parser_state.m_labels_in_scope.contains(target_label))
syntax_error(String::formatted("Label '{}' not found", target_label));
}
consume_or_insert_semicolon();
return create_ast_node<ContinueStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, target_label);
}
NonnullRefPtr<ConditionalExpression> Parser::parse_conditional_expression(NonnullRefPtr<Expression> test)
{
auto rule_start = push_start();
consume(TokenType::QuestionMark);
auto consequent = parse_expression(2);
consume(TokenType::Colon);
auto alternate = parse_expression(2);
return create_ast_node<ConditionalExpression>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(test), move(consequent), move(alternate));
}
NonnullRefPtr<TryStatement> Parser::parse_try_statement()
{
auto rule_start = push_start();
consume(TokenType::Try);
auto block = parse_block_statement();
RefPtr<CatchClause> handler;
if (match(TokenType::Catch))
handler = parse_catch_clause();
RefPtr<BlockStatement> finalizer;
if (match(TokenType::Finally)) {
consume();
finalizer = parse_block_statement();
}
if (!handler && !finalizer)
syntax_error("try statement must have a 'catch' or 'finally' clause");
return create_ast_node<TryStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(block), move(handler), move(finalizer));
}
NonnullRefPtr<DoWhileStatement> Parser::parse_do_while_statement()
{
auto rule_start = push_start();
consume(TokenType::Do);
auto body = [&]() -> NonnullRefPtr<Statement> {
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
return parse_statement();
}();
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
// Since ES 2015 a missing semicolon is inserted here, despite the regular ASI rules not applying
if (match(TokenType::Semicolon))
consume();
return create_ast_node<DoWhileStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(test), move(body));
}
NonnullRefPtr<WhileStatement> Parser::parse_while_statement()
{
auto rule_start = push_start();
consume(TokenType::While);
consume(TokenType::ParenOpen);
auto test = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
return create_ast_node<WhileStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(test), move(body));
}
NonnullRefPtr<SwitchStatement> Parser::parse_switch_statement()
{
auto rule_start = push_start();
consume(TokenType::Switch);
consume(TokenType::ParenOpen);
auto determinant = parse_expression(0);
consume(TokenType::ParenClose);
consume(TokenType::CurlyOpen);
NonnullRefPtrVector<SwitchCase> cases;
auto has_default = false;
while (match(TokenType::Case) || match(TokenType::Default)) {
if (match(TokenType::Default)) {
if (has_default)
syntax_error("Multiple 'default' clauses in switch statement");
has_default = true;
}
cases.append(parse_switch_case());
}
consume(TokenType::CurlyClose);
return create_ast_node<SwitchStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(determinant), move(cases));
}
NonnullRefPtr<WithStatement> Parser::parse_with_statement()
{
auto rule_start = push_start();
consume(TokenType::With);
consume(TokenType::ParenOpen);
auto object = parse_expression(0);
consume(TokenType::ParenClose);
auto body = parse_statement();
return create_ast_node<WithStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(object), move(body));
}
NonnullRefPtr<SwitchCase> Parser::parse_switch_case()
{
auto rule_start = push_start();
RefPtr<Expression> test;
if (consume().type() == TokenType::Case) {
test = parse_expression(0);
}
consume(TokenType::Colon);
NonnullRefPtrVector<Statement> consequent;
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
for (;;) {
if (match_declaration())
consequent.append(parse_declaration());
else if (match_statement())
consequent.append(parse_statement());
else
break;
}
return create_ast_node<SwitchCase>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(test), move(consequent));
}
NonnullRefPtr<CatchClause> Parser::parse_catch_clause()
{
auto rule_start = push_start();
consume(TokenType::Catch);
String parameter;
if (match(TokenType::ParenOpen)) {
consume();
parameter = consume(TokenType::Identifier).value();
consume(TokenType::ParenClose);
}
auto body = parse_block_statement();
return create_ast_node<CatchClause>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, parameter, move(body));
}
NonnullRefPtr<IfStatement> Parser::parse_if_statement()
{
auto rule_start = push_start();
auto parse_function_declaration_as_block_statement = [&] {
// https://tc39.es/ecma262/#sec-functiondeclarations-in-ifstatement-statement-clauses
// Code matching this production is processed as if each matching occurrence of
// FunctionDeclaration[?Yield, ?Await, ~Default] was the sole StatementListItem
// of a BlockStatement occupying that position in the source code.
ScopePusher scope(*this, ScopePusher::Let);
auto block = create_ast_node<BlockStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
block->append(parse_declaration());
block->add_functions(m_parser_state.m_function_scopes.last());
return block;
};
consume(TokenType::If);
consume(TokenType::ParenOpen);
auto predicate = parse_expression(0);
consume(TokenType::ParenClose);
RefPtr<Statement> consequent;
if (!m_parser_state.m_strict_mode && match(TokenType::Function))
consequent = parse_function_declaration_as_block_statement();
else
consequent = parse_statement();
RefPtr<Statement> alternate;
if (match(TokenType::Else)) {
consume();
if (!m_parser_state.m_strict_mode && match(TokenType::Function))
alternate = parse_function_declaration_as_block_statement();
else
alternate = parse_statement();
}
return create_ast_node<IfStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(predicate), move(*consequent), move(alternate));
}
NonnullRefPtr<Statement> Parser::parse_for_statement()
{
auto rule_start = push_start();
auto match_for_in_of = [&]() {
return match(TokenType::In) || (match(TokenType::Identifier) && m_parser_state.m_current_token.value() == "of");
};
consume(TokenType::For);
consume(TokenType::ParenOpen);
bool in_scope = false;
RefPtr<ASTNode> init;
if (!match(TokenType::Semicolon)) {
if (match_expression()) {
init = parse_expression(0, Associativity::Right, { TokenType::In });
if (match_for_in_of())
return parse_for_in_of_statement(*init);
} else if (match_variable_declaration()) {
if (!match(TokenType::Var)) {
m_parser_state.m_let_scopes.append(NonnullRefPtrVector<VariableDeclaration>());
in_scope = true;
}
init = parse_variable_declaration(true);
if (match_for_in_of())
return parse_for_in_of_statement(*init);
if (static_cast<VariableDeclaration&>(*init).declaration_kind() == DeclarationKind::Const) {
for (auto& declaration : static_cast<VariableDeclaration&>(*init).declarations()) {
if (!declaration.init())
syntax_error("Missing initializer in 'const' variable declaration");
}
}
} else {
syntax_error("Unexpected token in for loop");
}
}
consume(TokenType::Semicolon);
RefPtr<Expression> test;
if (!match(TokenType::Semicolon))
test = parse_expression(0);
consume(TokenType::Semicolon);
RefPtr<Expression> update;
if (!match(TokenType::ParenClose))
update = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
if (in_scope) {
m_parser_state.m_let_scopes.take_last();
}
return create_ast_node<ForStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(init), move(test), move(update), move(body));
}
NonnullRefPtr<Statement> Parser::parse_for_in_of_statement(NonnullRefPtr<ASTNode> lhs)
{
auto rule_start = push_start();
if (is<VariableDeclaration>(*lhs)) {
auto declarations = static_cast<VariableDeclaration&>(*lhs).declarations();
if (declarations.size() > 1)
syntax_error("multiple declarations not allowed in for..in/of");
if (declarations.size() < 1)
syntax_error("need exactly one variable declaration in for..in/of");
else if (declarations.first().init() != nullptr)
syntax_error("variable initializer not allowed in for..in/of");
}
auto in_or_of = consume();
auto rhs = parse_expression(0);
consume(TokenType::ParenClose);
TemporaryChange break_change(m_parser_state.m_in_break_context, true);
TemporaryChange continue_change(m_parser_state.m_in_continue_context, true);
auto body = parse_statement();
if (in_or_of.type() == TokenType::In)
return create_ast_node<ForInStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(lhs), move(rhs), move(body));
return create_ast_node<ForOfStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() }, move(lhs), move(rhs), move(body));
}
NonnullRefPtr<DebuggerStatement> Parser::parse_debugger_statement()
{
auto rule_start = push_start();
consume(TokenType::Debugger);
consume_or_insert_semicolon();
return create_ast_node<DebuggerStatement>({ m_parser_state.m_current_token.filename(), rule_start.position(), position() });
}
bool Parser::match(TokenType type) const
{
return m_parser_state.m_current_token.type() == type;
}
bool Parser::match_expression() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::BoolLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral
|| type == TokenType::StringLiteral
|| type == TokenType::TemplateLiteralStart
|| type == TokenType::NullLiteral
|| type == TokenType::Identifier
|| type == TokenType::New
|| type == TokenType::CurlyOpen
|| type == TokenType::BracketOpen
|| type == TokenType::ParenOpen
|| type == TokenType::Function
|| type == TokenType::This
|| type == TokenType::Super
|| type == TokenType::RegexLiteral
|| type == TokenType::Yield
|| match_unary_prefixed_expression();
}
bool Parser::match_unary_prefixed_expression() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::PlusPlus
|| type == TokenType::MinusMinus
|| type == TokenType::ExclamationMark
|| type == TokenType::Tilde
|| type == TokenType::Plus
|| type == TokenType::Minus
|| type == TokenType::Typeof
|| type == TokenType::Void
|| type == TokenType::Delete;
}
bool Parser::match_secondary_expression(const Vector<TokenType>& forbidden) const
{
auto type = m_parser_state.m_current_token.type();
if (forbidden.contains_slow(type))
return false;
return type == TokenType::Plus
|| type == TokenType::PlusEquals
|| type == TokenType::Minus
|| type == TokenType::MinusEquals
|| type == TokenType::Asterisk
|| type == TokenType::AsteriskEquals
|| type == TokenType::Slash
|| type == TokenType::SlashEquals
|| type == TokenType::Percent
|| type == TokenType::PercentEquals
|| type == TokenType::DoubleAsterisk
|| type == TokenType::DoubleAsteriskEquals
|| type == TokenType::Equals
|| type == TokenType::EqualsEqualsEquals
|| type == TokenType::ExclamationMarkEqualsEquals
|| type == TokenType::EqualsEquals
|| type == TokenType::ExclamationMarkEquals
|| type == TokenType::GreaterThan
|| type == TokenType::GreaterThanEquals
|| type == TokenType::LessThan
|| type == TokenType::LessThanEquals
|| type == TokenType::ParenOpen
|| type == TokenType::Period
|| type == TokenType::BracketOpen
|| type == TokenType::PlusPlus
|| type == TokenType::MinusMinus
|| type == TokenType::In
|| type == TokenType::Instanceof
|| type == TokenType::QuestionMark
|| type == TokenType::Ampersand
|| type == TokenType::AmpersandEquals
|| type == TokenType::Pipe
|| type == TokenType::PipeEquals
|| type == TokenType::Caret
|| type == TokenType::CaretEquals
|| type == TokenType::ShiftLeft
|| type == TokenType::ShiftLeftEquals
|| type == TokenType::ShiftRight
|| type == TokenType::ShiftRightEquals
|| type == TokenType::UnsignedShiftRight
|| type == TokenType::UnsignedShiftRightEquals
|| type == TokenType::DoubleAmpersand
|| type == TokenType::DoubleAmpersandEquals
|| type == TokenType::DoublePipe
|| type == TokenType::DoublePipeEquals
|| type == TokenType::DoubleQuestionMark
|| type == TokenType::DoubleQuestionMarkEquals;
}
bool Parser::match_statement() const
{
auto type = m_parser_state.m_current_token.type();
return match_expression()
|| type == TokenType::Return
|| type == TokenType::Yield
|| type == TokenType::Do
|| type == TokenType::If
|| type == TokenType::Throw
|| type == TokenType::Try
|| type == TokenType::While
|| type == TokenType::With
|| type == TokenType::For
|| type == TokenType::CurlyOpen
|| type == TokenType::Switch
|| type == TokenType::Break
|| type == TokenType::Continue
|| type == TokenType::Var
|| type == TokenType::Debugger
|| type == TokenType::Semicolon;
}
bool Parser::match_declaration() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::Function
|| type == TokenType::Class
|| type == TokenType::Const
|| type == TokenType::Let;
}
bool Parser::match_variable_declaration() const
{
auto type = m_parser_state.m_current_token.type();
return type == TokenType::Var
|| type == TokenType::Let
|| type == TokenType::Const;
}
bool Parser::match_identifier_name() const
{
return m_parser_state.m_current_token.is_identifier_name();
}
bool Parser::match_property_key() const
{
auto type = m_parser_state.m_current_token.type();
return match_identifier_name()
|| type == TokenType::BracketOpen
|| type == TokenType::StringLiteral
|| type == TokenType::NumericLiteral
|| type == TokenType::BigIntLiteral;
}
bool Parser::done() const
{
return match(TokenType::Eof);
}
Token Parser::consume()
{
auto old_token = m_parser_state.m_current_token;
m_parser_state.m_current_token = m_parser_state.m_lexer.next();
return old_token;
}
void Parser::consume_or_insert_semicolon()
{
// Semicolon was found and will be consumed
if (match(TokenType::Semicolon)) {
consume();
return;
}
// Insert semicolon if...
// ...token is preceded by one or more newlines
if (m_parser_state.m_current_token.trivia_contains_line_terminator())
return;
// ...token is a closing curly brace
if (match(TokenType::CurlyClose))
return;
// ...token is eof
if (match(TokenType::Eof))
return;
// No rule for semicolon insertion applies -> syntax error
expected("Semicolon");
}
Token Parser::consume(TokenType expected_type)
{
if (!match(expected_type)) {
expected(Token::name(expected_type));
}
return consume();
}
Token Parser::consume_and_validate_numeric_literal()
{
auto is_unprefixed_octal_number = [](const StringView& value) {
return value.length() > 1 && value[0] == '0' && isdigit(value[1]);
};
auto literal_start = position();
auto token = consume(TokenType::NumericLiteral);
if (m_parser_state.m_strict_mode && is_unprefixed_octal_number(token.value()))
syntax_error("Unprefixed octal number not allowed in strict mode", literal_start);
if (match_identifier_name() && m_parser_state.m_current_token.trivia().is_empty())
syntax_error("Numeric literal must not be immediately followed by identifier");
return token;
}
void Parser::expected(const char* what)
{
auto message = m_parser_state.m_current_token.message();
if (message.is_empty())
message = String::formatted("Unexpected token {}. Expected {}", m_parser_state.m_current_token.name(), what);
syntax_error(message);
}
Position Parser::position() const
{
return {
m_parser_state.m_current_token.line_number(),
m_parser_state.m_current_token.line_column()
};
}
bool Parser::try_parse_arrow_function_expression_failed_at_position(const Position& position) const
{
auto it = m_token_memoizations.find(position);
if (it == m_token_memoizations.end())
return false;
return (*it).value.try_parse_arrow_function_expression_failed;
}
void Parser::set_try_parse_arrow_function_expression_failed_at_position(const Position& position, bool failed)
{
m_token_memoizations.set(position, { failed });
}
void Parser::syntax_error(const String& message, Optional<Position> position)
{
if (!position.has_value())
position = this->position();
m_parser_state.m_errors.append({ message, position });
}
void Parser::save_state()
{
m_saved_state.append(m_parser_state);
}
void Parser::load_state()
{
VERIFY(!m_saved_state.is_empty());
m_parser_state = m_saved_state.take_last();
}
void Parser::discard_saved_state()
{
m_saved_state.take_last();
}
}