serenity/Kernel/VM/Region.cpp
Andreas Kling ea1911b561 Kernel: Share code between Region::map() and Region::remap_page()
These were doing mostly the same things, so let's just share the code.
2020-01-01 19:32:55 +01:00

444 lines
15 KiB
C++

#include <Kernel/FileSystem/Inode.h>
#include <Kernel/Process.h>
#include <Kernel/Thread.h>
#include <Kernel/VM/AnonymousVMObject.h>
#include <Kernel/VM/InodeVMObject.h>
#include <Kernel/VM/MemoryManager.h>
#include <Kernel/VM/Region.h>
//#define MM_DEBUG
//#define PAGE_FAULT_DEBUG
Region::Region(const Range& range, const String& name, u8 access)
: m_range(range)
, m_vmobject(AnonymousVMObject::create_with_size(size()))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::Region(const Range& range, NonnullRefPtr<Inode> inode, const String& name, u8 access)
: m_range(range)
, m_vmobject(InodeVMObject::create_with_inode(*inode))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::Region(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const String& name, u8 access)
: m_range(range)
, m_offset_in_vmobject(offset_in_vmobject)
, m_vmobject(move(vmobject))
, m_name(name)
, m_access(access)
{
MM.register_region(*this);
}
Region::~Region()
{
// Make sure we disable interrupts so we don't get interrupted between unmapping and unregistering.
// Unmapping the region will give the VM back to the RangeAllocator, so an interrupt handler would
// find the address<->region mappings in an invalid state there.
InterruptDisabler disabler;
if (m_page_directory) {
unmap(ShouldDeallocateVirtualMemoryRange::Yes);
ASSERT(!m_page_directory);
}
MM.unregister_region(*this);
}
NonnullOwnPtr<Region> Region::clone()
{
ASSERT(current);
// FIXME: What should we do for privately mapped InodeVMObjects?
if (m_shared || vmobject().is_inode()) {
ASSERT(!m_stack);
#ifdef MM_DEBUG
dbgprintf("%s<%u> Region::clone(): sharing %s (V%p)\n",
current->process().name().characters(),
current->pid(),
m_name.characters(),
vaddr().get());
#endif
// Create a new region backed by the same VMObject.
return Region::create_user_accessible(m_range, m_vmobject, m_offset_in_vmobject, m_name, m_access);
}
#ifdef MM_DEBUG
dbgprintf("%s<%u> Region::clone(): cowing %s (V%p)\n",
current->process().name().characters(),
current->pid(),
m_name.characters(),
vaddr().get());
#endif
// Set up a COW region. The parent (this) region becomes COW as well!
ensure_cow_map().fill(true);
remap();
auto clone_region = Region::create_user_accessible(m_range, m_vmobject->clone(), m_offset_in_vmobject, m_name, m_access);
clone_region->ensure_cow_map();
if (m_stack) {
ASSERT(is_readable());
ASSERT(is_writable());
ASSERT(!is_shared());
ASSERT(vmobject().is_anonymous());
clone_region->set_stack(true);
}
return clone_region;
}
bool Region::commit()
{
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit %u pages in Region %p (VMO=%p) at V%p\n", vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
for (size_t i = 0; i < page_count(); ++i) {
if (!commit(i))
return false;
}
return true;
}
bool Region::commit(size_t page_index)
{
ASSERT(vmobject().is_anonymous() || vmobject().is_purgeable());
InterruptDisabler disabler;
#ifdef MM_DEBUG
dbgprintf("MM: commit single page (%zu) in Region %p (VMO=%p) at V%p\n", page_index, vmobject().page_count(), this, &vmobject(), vaddr().get());
#endif
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index];
if (!vmobject_physical_page_entry.is_null())
return true;
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
if (!physical_page) {
kprintf("MM: commit was unable to allocate a physical page\n");
return false;
}
vmobject_physical_page_entry = move(physical_page);
remap_page(page_index);
return true;
}
u32 Region::cow_pages() const
{
if (!m_cow_map)
return 0;
u32 count = 0;
for (int i = 0; i < m_cow_map->size(); ++i)
count += m_cow_map->get(i);
return count;
}
size_t Region::amount_dirty() const
{
if (!vmobject().is_inode())
return amount_resident();
return static_cast<const InodeVMObject&>(vmobject()).amount_dirty();
}
size_t Region::amount_resident() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
if (m_vmobject->physical_pages()[first_page_index() + i])
bytes += PAGE_SIZE;
}
return bytes;
}
size_t Region::amount_shared() const
{
size_t bytes = 0;
for (size_t i = 0; i < page_count(); ++i) {
auto& physical_page = m_vmobject->physical_pages()[first_page_index() + i];
if (physical_page && physical_page->ref_count() > 1)
bytes += PAGE_SIZE;
}
return bytes;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, const StringView& name, u8 access)
{
auto region = make<Region>(range, name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<VMObject> vmobject, size_t offset_in_vmobject, const StringView& name, u8 access)
{
auto region = make<Region>(range, move(vmobject), offset_in_vmobject, name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_user_accessible(const Range& range, NonnullRefPtr<Inode> inode, const StringView& name, u8 access)
{
auto region = make<Region>(range, move(inode), name, access);
region->m_user_accessible = true;
return region;
}
NonnullOwnPtr<Region> Region::create_kernel_only(const Range& range, const StringView& name, u8 access)
{
auto region = make<Region>(range, name, access);
region->m_user_accessible = false;
return region;
}
bool Region::should_cow(size_t page_index) const
{
if (m_shared)
return false;
return m_cow_map && m_cow_map->get(page_index);
}
void Region::set_should_cow(size_t page_index, bool cow)
{
ASSERT(!m_shared);
ensure_cow_map().set(page_index, cow);
}
Bitmap& Region::ensure_cow_map() const
{
if (!m_cow_map)
m_cow_map = make<Bitmap>(page_count(), true);
return *m_cow_map;
}
void Region::map_individual_page_impl(size_t page_index)
{
auto page_vaddr = vaddr().offset(page_index * PAGE_SIZE);
auto& pte = MM.ensure_pte(*m_page_directory, page_vaddr);
auto& physical_page = vmobject().physical_pages()[first_page_index() + page_index];
if (!physical_page) {
pte.set_physical_page_base(0);
pte.set_present(false);
} else {
pte.set_physical_page_base(physical_page->paddr().get());
pte.set_present(is_readable());
if (should_cow(page_index))
pte.set_writable(false);
else
pte.set_writable(is_writable());
if (g_cpu_supports_nx)
pte.set_execute_disabled(!is_executable());
pte.set_user_allowed(is_user_accessible());
}
m_page_directory->flush(page_vaddr);
#ifdef MM_DEBUG
dbg() << "MM: >> region map (PD=" << m_page_directory->cr3() << ", PTE=" << (void*)pte.raw() << "{" << &pte << "}) " << name() << " " << page_vaddr << " => " << physical_page->paddr() << " (@" << physical_page.ptr() << ")";
#endif
}
void Region::remap_page(size_t page_index)
{
ASSERT(m_page_directory);
InterruptDisabler disabler;
ASSERT(vmobject().physical_pages()[first_page_index() + page_index]);
map_individual_page_impl(page_index);
}
void Region::unmap(ShouldDeallocateVirtualMemoryRange deallocate_range)
{
InterruptDisabler disabler;
ASSERT(m_page_directory);
for (size_t i = 0; i < page_count(); ++i) {
auto vaddr = this->vaddr().offset(i * PAGE_SIZE);
auto& pte = MM.ensure_pte(*m_page_directory, vaddr);
pte.set_physical_page_base(0);
pte.set_present(false);
pte.set_writable(false);
pte.set_user_allowed(false);
m_page_directory->flush(vaddr);
#ifdef MM_DEBUG
auto& physical_page = vmobject().physical_pages()[first_page_index() + i];
dbgprintf("MM: >> Unmapped V%p => P%p <<\n", vaddr.get(), physical_page ? physical_page->paddr().get() : 0);
#endif
}
if (deallocate_range == ShouldDeallocateVirtualMemoryRange::Yes)
m_page_directory->range_allocator().deallocate(range());
m_page_directory = nullptr;
}
void Region::map(PageDirectory& page_directory)
{
ASSERT(!m_page_directory || m_page_directory == &page_directory);
InterruptDisabler disabler;
m_page_directory = page_directory;
#ifdef MM_DEBUG
dbgprintf("MM: Region::map() will map VMO pages %u - %u (VMO page count: %u)\n", first_page_index(), last_page_index(), vmobject().page_count());
#endif
for (size_t page_index = 0; page_index < page_count(); ++page_index)
map_individual_page_impl(page_index);
}
void Region::remap()
{
ASSERT(m_page_directory);
map(*m_page_directory);
}
PageFaultResponse Region::handle_fault(const PageFault& fault)
{
auto page_index_in_region = page_index_from_address(fault.vaddr());
if (fault.type() == PageFault::Type::PageNotPresent) {
if (!is_readable()) {
dbgprintf("NP(non-readable) fault in Region{%p}[%u]\n", this, page_index_in_region);
return PageFaultResponse::ShouldCrash;
}
if (vmobject().is_inode()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("NP(inode) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_inode_fault(page_index_in_region);
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf("NP(zero) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_zero_fault(page_index_in_region);
}
ASSERT(fault.type() == PageFault::Type::ProtectionViolation);
if (fault.access() == PageFault::Access::Write && is_writable() && should_cow(page_index_in_region)) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("PV(cow) fault in Region{%p}[%u]\n", this, page_index_in_region);
#endif
return handle_cow_fault(page_index_in_region);
}
kprintf("PV(error) fault in Region{%p}[%u] at V%p\n", this, page_index_in_region, fault.vaddr().get());
return PageFaultResponse::ShouldCrash;
}
PageFaultResponse Region::handle_zero_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(vmobject().is_anonymous());
sti();
LOCKER(vmobject().m_paging_lock);
cli();
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: zero_page() but page already present. Fine with me!\n");
#endif
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_zero_fault();
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::Yes);
if (physical_page.is_null()) {
kprintf("MM: handle_zero_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> ZERO P%p\n", physical_page->paddr().get());
#endif
vmobject_physical_page_entry = move(physical_page);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
PageFaultResponse Region::handle_cow_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
auto& vmobject_physical_page_entry = vmobject().physical_pages()[first_page_index() + page_index_in_region];
if (vmobject_physical_page_entry->ref_count() == 1) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page but nobody is sharing it anymore. Remap r/w\n");
#endif
set_should_cow(page_index_in_region, false);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_cow_fault();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> It's a COW page and it's time to COW!\n");
#endif
auto physical_page_to_copy = move(vmobject_physical_page_entry);
auto physical_page = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (physical_page.is_null()) {
kprintf("MM: handle_cow_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
u8* dest_ptr = MM.quickmap_page(*physical_page);
const u8* src_ptr = vaddr().offset(page_index_in_region * PAGE_SIZE).as_ptr();
#ifdef PAGE_FAULT_DEBUG
dbgprintf(" >> COW P%p <- P%p\n", physical_page->paddr().get(), physical_page_to_copy->paddr().get());
#endif
memcpy(dest_ptr, src_ptr, PAGE_SIZE);
vmobject_physical_page_entry = move(physical_page);
MM.unquickmap_page();
set_should_cow(page_index_in_region, false);
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
PageFaultResponse Region::handle_inode_fault(size_t page_index_in_region)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(vmobject().is_inode());
auto& inode_vmobject = static_cast<InodeVMObject&>(vmobject());
auto& vmobject_physical_page_entry = inode_vmobject.physical_pages()[first_page_index() + page_index_in_region];
sti();
LOCKER(vmobject().m_paging_lock);
cli();
#ifdef PAGE_FAULT_DEBUG
dbg() << *current << " inode fault in " << name() << " page index: " << page_index_in_region;
#endif
if (!vmobject_physical_page_entry.is_null()) {
#ifdef PAGE_FAULT_DEBUG
dbgprintf("MM: page_in_from_inode() but page already present. Fine with me!\n");
#endif
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}
if (current)
current->did_inode_fault();
#ifdef MM_DEBUG
dbgprintf("MM: page_in_from_inode ready to read from inode\n");
#endif
sti();
u8 page_buffer[PAGE_SIZE];
auto& inode = inode_vmobject.inode();
auto nread = inode.read_bytes((first_page_index() + page_index_in_region) * PAGE_SIZE, PAGE_SIZE, page_buffer, nullptr);
if (nread < 0) {
kprintf("MM: handle_inode_fault had error (%d) while reading!\n", nread);
return PageFaultResponse::ShouldCrash;
}
if (nread < PAGE_SIZE) {
// If we read less than a page, zero out the rest to avoid leaking uninitialized data.
memset(page_buffer + nread, 0, PAGE_SIZE - nread);
}
cli();
vmobject_physical_page_entry = MM.allocate_user_physical_page(MemoryManager::ShouldZeroFill::No);
if (vmobject_physical_page_entry.is_null()) {
kprintf("MM: handle_inode_fault was unable to allocate a physical page\n");
return PageFaultResponse::ShouldCrash;
}
u8* dest_ptr = MM.quickmap_page(*vmobject_physical_page_entry);
memcpy(dest_ptr, page_buffer, PAGE_SIZE);
MM.unquickmap_page();
remap_page(page_index_in_region);
return PageFaultResponse::Continue;
}