mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-23 01:41:59 -05:00
194 lines
4.7 KiB
C++
194 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) 2020, the SerenityOS developers.
|
|
*
|
|
* SPDX-License-Identifier: BSD-2-Clause
|
|
*/
|
|
|
|
#include "MCTSTree.h"
|
|
#include <stdlib.h>
|
|
|
|
MCTSTree::MCTSTree(Chess::Board const& board, MCTSTree* parent)
|
|
: m_parent(parent)
|
|
, m_board(make<Chess::Board>(board))
|
|
, m_last_move(board.last_move())
|
|
, m_turn(board.turn())
|
|
{
|
|
}
|
|
|
|
MCTSTree::MCTSTree(MCTSTree&& other)
|
|
: m_children(move(other.m_children))
|
|
, m_parent(other.m_parent)
|
|
, m_white_points(other.m_white_points)
|
|
, m_simulations(other.m_simulations)
|
|
, m_board(move(other.m_board))
|
|
, m_last_move(move(other.m_last_move))
|
|
, m_turn(other.m_turn)
|
|
, m_moves_generated(other.m_moves_generated)
|
|
{
|
|
other.m_parent = nullptr;
|
|
}
|
|
|
|
MCTSTree& MCTSTree::select_leaf()
|
|
{
|
|
if (!expanded() || m_children.size() == 0)
|
|
return *this;
|
|
|
|
MCTSTree* node = nullptr;
|
|
double max_uct = -double(INFINITY);
|
|
for (auto& child : m_children) {
|
|
double uct = child->uct(m_turn);
|
|
if (uct >= max_uct) {
|
|
max_uct = uct;
|
|
node = child;
|
|
}
|
|
}
|
|
VERIFY(node);
|
|
return node->select_leaf();
|
|
}
|
|
|
|
MCTSTree& MCTSTree::expand()
|
|
{
|
|
VERIFY(!expanded() || m_children.size() == 0);
|
|
|
|
if (!m_moves_generated) {
|
|
m_board->generate_moves([&](Chess::Move chess_move) {
|
|
auto clone = m_board->clone_without_history();
|
|
clone.apply_move(chess_move);
|
|
m_children.append(make<MCTSTree>(move(clone), this));
|
|
return IterationDecision::Continue;
|
|
});
|
|
m_moves_generated = true;
|
|
if (m_children.size() != 0)
|
|
m_board = nullptr; // Release the board to save memory.
|
|
}
|
|
|
|
if (m_children.size() == 0) {
|
|
return *this;
|
|
}
|
|
|
|
for (auto& child : m_children) {
|
|
if (child->m_simulations == 0) {
|
|
return *child;
|
|
}
|
|
}
|
|
VERIFY_NOT_REACHED();
|
|
}
|
|
|
|
int MCTSTree::simulate_game() const
|
|
{
|
|
Chess::Board clone = *m_board;
|
|
while (!clone.game_finished()) {
|
|
clone.apply_move(clone.random_move());
|
|
}
|
|
return clone.game_score();
|
|
}
|
|
|
|
int MCTSTree::heuristic() const
|
|
{
|
|
if (m_board->game_finished())
|
|
return m_board->game_score();
|
|
|
|
double winchance = max(min(double(m_board->material_imbalance()) / 6, 1.0), -1.0);
|
|
|
|
double random = double(rand()) / RAND_MAX;
|
|
if (winchance >= random)
|
|
return 1;
|
|
if (winchance <= -random)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void MCTSTree::apply_result(int game_score)
|
|
{
|
|
m_simulations++;
|
|
m_white_points += game_score;
|
|
|
|
if (m_parent)
|
|
m_parent->apply_result(game_score);
|
|
}
|
|
|
|
void MCTSTree::do_round()
|
|
{
|
|
|
|
// Note: Limit expansion to spare some memory
|
|
// Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.
|
|
// Rémi Coulom.
|
|
auto* node_ptr = &select_leaf();
|
|
if (node_ptr->m_simulations > s_number_of_visit_parameter)
|
|
node_ptr = &select_leaf().expand();
|
|
|
|
auto& node = *node_ptr;
|
|
|
|
int result;
|
|
if constexpr (s_eval_method == EvalMethod::Simulation) {
|
|
result = node.simulate_game();
|
|
} else {
|
|
result = node.heuristic();
|
|
}
|
|
node.apply_result(result);
|
|
}
|
|
|
|
Optional<MCTSTree&> MCTSTree::child_with_move(Chess::Move chess_move)
|
|
{
|
|
for (auto& node : m_children) {
|
|
if (node->last_move() == chess_move)
|
|
return *node;
|
|
}
|
|
return {};
|
|
}
|
|
|
|
MCTSTree& MCTSTree::best_node()
|
|
{
|
|
int score_multiplier = (m_turn == Chess::Color::White) ? 1 : -1;
|
|
|
|
MCTSTree* best_node_ptr = nullptr;
|
|
double best_score = -double(INFINITY);
|
|
VERIFY(m_children.size());
|
|
for (auto& node : m_children) {
|
|
double node_score = node->expected_value() * score_multiplier;
|
|
if (node_score >= best_score) {
|
|
best_node_ptr = node;
|
|
best_score = node_score;
|
|
}
|
|
}
|
|
VERIFY(best_node_ptr);
|
|
|
|
return *best_node_ptr;
|
|
}
|
|
|
|
Chess::Move MCTSTree::last_move() const
|
|
{
|
|
return m_last_move.value();
|
|
}
|
|
|
|
double MCTSTree::expected_value() const
|
|
{
|
|
if (m_simulations == 0)
|
|
return 0;
|
|
|
|
return double(m_white_points) / m_simulations;
|
|
}
|
|
|
|
double MCTSTree::uct(Chess::Color color) const
|
|
{
|
|
// UCT: Upper Confidence Bound Applied to Trees.
|
|
// Kocsis, Levente; Szepesvári, Csaba (2006). "Bandit based Monte-Carlo Planning"
|
|
|
|
// Fun fact: Szepesvári was my data structures professor.
|
|
double expected = expected_value() * ((color == Chess::Color::White) ? 1 : -1);
|
|
return expected + s_exploration_parameter * sqrt(log(m_parent->m_simulations) / m_simulations);
|
|
}
|
|
|
|
bool MCTSTree::expanded() const
|
|
{
|
|
if (!m_moves_generated)
|
|
return false;
|
|
|
|
for (auto& child : m_children) {
|
|
if (child->m_simulations == 0)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|