serenity/Libraries/LibGfx/DisjointRectSet.cpp
2020-02-06 12:04:00 +01:00

75 lines
2.6 KiB
C++

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <LibGfx/DisjointRectSet.h>
namespace Gfx {
void DisjointRectSet::add(const Rect& new_rect)
{
for (auto& rect : m_rects) {
if (rect.contains(new_rect))
return;
}
m_rects.append(new_rect);
if (m_rects.size() > 1)
shatter();
}
void DisjointRectSet::shatter()
{
Vector<Rect, 32> output;
output.ensure_capacity(m_rects.size());
bool pass_had_intersections = false;
do {
pass_had_intersections = false;
output.clear_with_capacity();
for (int i = 0; i < m_rects.size(); ++i) {
auto& r1 = m_rects[i];
for (int j = 0; j < m_rects.size(); ++j) {
if (i == j)
continue;
auto& r2 = m_rects[j];
if (!r1.intersects(r2))
continue;
pass_had_intersections = true;
auto pieces = r1.shatter(r2);
for (auto& piece : pieces)
output.append(piece);
m_rects.remove(i);
for (; i < m_rects.size(); ++i)
output.append(m_rects[i]);
goto next_pass;
}
output.append(r1);
}
next_pass:
swap(output, m_rects);
} while (pass_had_intersections);
}
}