serenity/Userland/Games/2048/Game.cpp
Mohsan Ali d609dde7b0 2048: Let user decide if he wants to continue the game
Before game finish when a player has reached target tile,
Now player will be able to decide if he wants to continue or not
2021-10-05 13:27:57 +03:30

314 lines
8.3 KiB
C++

/*
* Copyright (c) 2020, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "Game.h"
#include <AK/Array.h>
#include <AK/NumericLimits.h>
#include <AK/ScopeGuard.h>
#include <AK/String.h>
#include <stdlib.h>
Game::Game(size_t grid_size, size_t target_tile, bool evil_ai)
: m_grid_size(grid_size)
, m_evil_ai(evil_ai)
{
if (target_tile == 0)
m_target_tile = 2048;
else if ((target_tile & (target_tile - 1)) != 0)
m_target_tile = 1 << max_power_for_board(grid_size);
else
m_target_tile = target_tile;
m_board.m_tiles.resize(grid_size);
for (auto& row : m_board.m_tiles) {
row.ensure_capacity(grid_size);
for (size_t i = 0; i < grid_size; i++)
row.append(0);
}
add_tile();
add_tile();
}
void Game::add_random_tile()
{
int row;
int column;
do {
row = rand() % m_grid_size;
column = rand() % m_grid_size;
} while (m_board.m_tiles[row][column] != 0);
size_t value = rand() < RAND_MAX * 0.9 ? 2 : 4;
m_board.add_tile(row, column, value);
}
void Game::Board::transpose()
{
for (size_t i = 1; i < m_tiles.size(); ++i) {
for (size_t j = 0; j < i; j++)
swap(m_tiles[i][j], m_tiles[j][i]);
}
for (auto& t : m_sliding_tiles) {
swap(t.row_from, t.column_from);
swap(t.row_to, t.column_to);
}
}
void Game::Board::reverse()
{
for (auto& row : m_tiles) {
for (size_t i = 0; i < row.size() / 2; ++i)
swap(row[i], row[row.size() - i - 1]);
}
auto const row_size = m_tiles[0].size();
for (auto& t : m_sliding_tiles) {
t.column_from = row_size - t.column_from - 1;
t.column_to = row_size - t.column_to - 1;
}
}
size_t Game::Board::slide_row(size_t row_index)
{
Game::Board::Row& row = m_tiles[row_index];
size_t successful_merge_score = 0;
auto next_nonempty = [&](size_t start_index) {
size_t next = start_index;
for (; next < row.size(); next++) {
if (row[next] != 0)
break;
}
return next;
};
size_t current_index = 0;
size_t first = next_nonempty(0);
if (first == row.size()) // empty row
return 0;
while (first < row.size()) {
auto second = next_nonempty(first + 1);
if (second == row.size() || row[first] != row[second]) {
m_sliding_tiles.append({ row_index, first, row[first], row_index, current_index, row[first] });
row[current_index] = row[first];
current_index++;
first = second;
} else {
VERIFY(row[first] == row[second]);
m_sliding_tiles.append({ row_index, first, row[first], row_index, current_index, 2 * row[first] });
m_sliding_tiles.append({ row_index, second, row[second], row_index, current_index, 2 * row[first] });
row[current_index] = 2 * row[first];
current_index++;
successful_merge_score += 2 * row[first];
first = next_nonempty(second + 1);
}
}
for (; current_index < row.size(); current_index++)
row[current_index] = 0;
return successful_merge_score;
}
size_t Game::Board::slide_left()
{
m_sliding_tiles.clear();
size_t successful_merge_score = 0;
for (size_t row_index = 0; row_index < m_tiles.size(); row_index++)
successful_merge_score += slide_row(row_index);
return successful_merge_score;
}
static bool is_complete(Game::Board const& board, size_t target)
{
for (auto& row : board.tiles()) {
if (row.contains_slow(target))
return true;
}
return false;
}
static bool has_no_neighbors(Span<u32 const> const& row)
{
if (row.size() < 2)
return true;
auto x = row[0];
auto y = row[1];
if (x == y)
return false;
return has_no_neighbors(row.slice(1, row.size() - 1));
};
bool Game::Board::is_stalled()
{
static auto stalled = [](auto& row) {
return !row.contains_slow(0) && has_no_neighbors(row.span());
};
for (auto& row : m_tiles)
if (!stalled(row))
return false;
transpose();
auto scope_guard = ScopeGuard([&]() { transpose(); });
for (auto& row : m_tiles)
if (!stalled(row))
return false;
return true;
}
static size_t get_number_of_free_cells(Game::Board const& board)
{
size_t accumulator = 0;
for (auto& row : board.tiles()) {
for (auto& cell : row)
accumulator += cell == 0;
}
return accumulator;
}
Game::Board::SlideResult Game::Board::slide_tiles(Direction direction)
{
size_t successful_merge_score = 0;
switch (direction) {
case Direction::Left:
successful_merge_score = slide_left();
break;
case Direction::Right:
reverse();
successful_merge_score = slide_left();
reverse();
break;
case Direction::Up:
transpose();
successful_merge_score = slide_left();
transpose();
break;
case Direction::Down:
transpose();
reverse();
successful_merge_score = slide_left();
reverse();
transpose();
break;
}
bool moved = false;
for (auto& t : m_sliding_tiles) {
if (t.row_from != t.row_to || t.column_from != t.column_to)
moved = true;
}
return { moved, successful_merge_score };
}
Game::MoveOutcome Game::attempt_move(Direction direction)
{
auto [moved, successful_merge_score] = m_board.slide_tiles(direction);
if (moved) {
m_turns++;
m_score += successful_merge_score;
add_tile();
}
if (is_complete(m_board, m_target_tile) && !m_want_to_continue)
return MoveOutcome::Won;
if (m_board.is_stalled())
return MoveOutcome::GameOver;
if (moved)
return MoveOutcome::OK;
return MoveOutcome::InvalidMove;
}
void Game::add_evil_tile()
{
size_t worst_row = 0;
size_t worst_column = 0;
u32 worst_value = 2;
size_t most_free_cells = NumericLimits<size_t>::max();
size_t worst_score = NumericLimits<size_t>::max();
for (size_t row = 0; row < m_grid_size; row++) {
for (size_t column = 0; column < m_grid_size; column++) {
if (m_board.m_tiles[row][column] != 0)
continue;
for (u32 value : Array { 2, 4 }) {
Game saved_state = *this;
saved_state.m_board.m_tiles[row][column] = value;
if (saved_state.m_board.is_stalled()) {
// We can stall the board now, instant game over.
worst_row = row;
worst_column = column;
worst_value = value;
goto found_worst_tile;
}
// These are the best outcome and score the player can achieve in one move.
// We want this to be as low as possible.
size_t best_outcome = 0;
size_t best_score = 0;
for (auto direction : Array { Direction::Down, Direction::Left, Direction::Right, Direction::Up }) {
Game moved_state = saved_state;
auto [moved, score_delta] = moved_state.m_board.slide_tiles(direction);
if (!moved) // invalid move
continue;
best_outcome = max(best_outcome, get_number_of_free_cells(moved_state.board()));
best_score = max(best_score, score_delta);
}
// We already know a worse cell placement; discard.
if (best_outcome > most_free_cells)
continue;
// This tile is the same as the worst we know in terms of board population,
// but the player can achieve the same or better score; discard.
if (best_outcome == most_free_cells && best_score >= worst_score)
continue;
worst_row = row;
worst_column = column;
worst_value = value;
most_free_cells = best_outcome;
worst_score = best_score;
}
}
}
found_worst_tile:
m_board.add_tile(worst_row, worst_column, worst_value);
}
u32 Game::largest_tile() const
{
u32 tile = 0;
for (auto& row : m_board.m_tiles) {
for (auto& cell : row)
tile = max(tile, cell);
}
return tile;
}