ladybird/Kernel/Scheduler.cpp

602 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/QuickSort.h>
#include <AK/TemporaryChange.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Net/Socket.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
Kernel: Introduce the new Time management subsystem This new subsystem includes better abstractions of how time will be handled in the OS. We take advantage of the existing RTC timer to aid in keeping time synchronized. This is standing in contrast to how we handled time-keeping in the kernel, where the PIT was responsible for that function in addition to update the scheduler about ticks. With that new advantage, we can easily change the ticking dynamically and still keep the time synchronized. In the process context, we no longer use a fixed declaration of TICKS_PER_SECOND, but we call the TimeManagement singleton class to provide us the right value. This allows us to use dynamic ticking in the future, a feature known as tickless kernel. The scheduler no longer does by himself the calculation of real time (Unix time), and just calls the TimeManagment singleton class to provide the value. Also, we can use 2 new boot arguments: - the "time" boot argument accpets either the value "modern", or "legacy". If "modern" is specified, the time management subsystem will try to setup HPET. Otherwise, for "legacy" value, the time subsystem will revert to use the PIT & RTC, leaving HPET disabled. If this boot argument is not specified, the default pattern is to try to setup HPET. - the "hpet" boot argumet accepts either the value "periodic" or "nonperiodic". If "periodic" is specified, the HPET will scan for periodic timers, and will assert if none are found. If only one is found, that timer will be assigned for the time-keeping task. If more than one is found, both time-keeping task & scheduler-ticking task will be assigned to periodic timers. If this boot argument is not specified, the default pattern is to try to scan for HPET periodic timers. This boot argument has no effect if HPET is disabled. In hardware context, PIT & RealTimeClock classes are merely inheriting from the HardwareTimer class, and they allow to use the old i8254 (PIT) and RTC devices, managing them via IO ports. By default, the RTC will be programmed to a frequency of 1024Hz. The PIT will be programmed to a frequency close to 1000Hz. About HPET, depending if we need to scan for periodic timers or not, we try to set a frequency close to 1000Hz for the time-keeping timer and scheduler-ticking timer. Also, if possible, we try to enable the Legacy replacement feature of the HPET. This feature if exists, instructs the chipset to disconnect both i8254 (PIT) and RTC. This behavior is observable on QEMU, and was verified against the source code: https://github.com/qemu/qemu/commit/ce967e2f33861b0e17753f97fa4527b5943c94b6 The HPETComparator class is inheriting from HardwareTimer class, and is responsible for an individual HPET comparator, which is essentially a timer. Therefore, it needs to call the singleton HPET class to perform HPET-related operations. The new abstraction of Hardware timers brings an opportunity of more new features in the foreseeable future. For example, we can change the callback function of each hardware timer, thus it makes it possible to swap missions between hardware timers, or to allow to use a hardware timer for other temporary missions (e.g. calibrating the LAPIC timer, measuring the CPU frequency, etc).
2020-03-09 17:03:27 +02:00
#include <Kernel/Time/TimeManagement.h>
#include <Kernel/TimerQueue.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
//#define SCHEDULER_RUNNABLE_DEBUG
namespace Kernel {
SchedulerData* g_scheduler_data;
timeval g_timeofday;
RecursiveSpinLock g_scheduler_lock;
void Scheduler::init_thread(Thread& thread)
{
g_scheduler_data->m_nonrunnable_threads.append(thread);
}
void Scheduler::update_state_for_thread(Thread& thread)
{
ASSERT_INTERRUPTS_DISABLED();
auto& list = g_scheduler_data->thread_list_for_state(thread.state());
if (list.contains(thread))
return;
list.append(thread);
}
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 1ms
if (&thread == Processor::current().idle_thread())
return 1;
return 10;
}
timeval Scheduler::time_since_boot()
{
return { TimeManagement::the().seconds_since_boot(), (suseconds_t)TimeManagement::the().ticks_this_second() * 1000 };
}
Thread* g_finalizer;
WaitQueue* g_finalizer_wait_queue;
Atomic<bool> g_finalizer_has_work{false};
static Process* s_colonel_process;
u64 g_uptime;
Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
: m_joinee(joinee)
, m_joinee_exit_value(joinee_exit_value)
{
ASSERT(m_joinee.m_joiner == nullptr);
auto current_thread = Thread::current();
m_joinee.m_joiner = current_thread;
current_thread->m_joinee = &joinee;
}
bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
{
return !joiner.m_joinee;
}
Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
: m_blocked_description(description)
{
}
const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
{
return m_blocked_description;
}
Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.can_accept();
}
Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.setup_state() == Socket::SetupState::Completed;
}
Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_send_timeout()) {
timeval deadline = Scheduler::time_since_boot();
deadline.tv_sec += socket.send_timeout().tv_sec;
deadline.tv_usec += socket.send_timeout().tv_usec;
deadline.tv_sec += (socket.send_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::WriteBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_write();
}
return blocked_description().can_write();
}
Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_receive_timeout()) {
timeval deadline = Scheduler::time_since_boot();
deadline.tv_sec += socket.receive_timeout().tv_sec;
deadline.tv_usec += socket.receive_timeout().tv_usec;
deadline.tv_sec += (socket.receive_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::ReadBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_read();
}
return blocked_description().can_read();
}
Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
: m_block_until_condition(move(condition))
, m_state_string(state_string)
{
ASSERT(m_block_until_condition);
}
bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
{
return m_block_until_condition();
}
Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
2019-07-18 17:26:11 +02:00
: m_wakeup_time(wakeup_time)
{
}
bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
2019-07-18 17:26:11 +02:00
{
return m_wakeup_time <= g_uptime;
}
Thread::SelectBlocker::SelectBlocker(const timespec& ts, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
: m_select_timeout(ts)
2019-07-18 17:39:49 +02:00
, m_select_has_timeout(select_has_timeout)
, m_select_read_fds(read_fds)
, m_select_write_fds(write_fds)
, m_select_exceptional_fds(except_fds)
{
}
bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
2019-07-18 17:39:49 +02:00
{
if (m_select_has_timeout) {
if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec * 1000 >= m_select_timeout.tv_nsec))
2019-07-18 17:39:49 +02:00
return true;
}
auto& process = thread.process();
for (int fd : m_select_read_fds) {
if (!process.m_fds[fd])
continue;
2019-07-18 17:39:49 +02:00
if (process.m_fds[fd].description->can_read())
return true;
}
for (int fd : m_select_write_fds) {
if (!process.m_fds[fd])
continue;
2019-07-18 17:39:49 +02:00
if (process.m_fds[fd].description->can_write())
return true;
}
return false;
}
Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
2019-07-18 18:05:19 +02:00
: m_wait_options(wait_options)
, m_waitee_pid(waitee_pid)
{
}
bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
2019-07-18 18:05:19 +02:00
{
bool should_unblock = m_wait_options & WNOHANG;
if (m_waitee_pid != -1) {
auto* peer = Process::from_pid(m_waitee_pid);
if (!peer)
return true;
}
2019-07-18 18:05:19 +02:00
thread.process().for_each_child([&](Process& child) {
if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
return IterationDecision::Continue;
bool child_exited = child.is_dead();
bool child_stopped = false;
if (child.thread_count()) {
child.for_each_thread([&](auto& child_thread) {
if (child_thread.state() == Thread::State::Stopped && !child_thread.has_pending_signal(SIGCONT)) {
child_stopped = true;
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
2019-07-18 18:05:19 +02:00
bool fits_the_spec = ((m_wait_options & WEXITED) && child_exited)
|| ((m_wait_options & WSTOPPED) && child_stopped);
2019-07-18 18:05:19 +02:00
if (!fits_the_spec)
2019-07-18 18:05:19 +02:00
return IterationDecision::Continue;
m_waitee_pid = child.pid();
should_unblock = true;
return IterationDecision::Break;
});
return should_unblock;
}
Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
: m_reason(reason)
{
}
bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
{
// someone else has to unblock us
return false;
}
// Called by the scheduler on threads that are blocked for some reason.
// Make a decision as to whether to unblock them or not.
void Thread::consider_unblock(time_t now_sec, long now_usec)
{
switch (state()) {
case Thread::Invalid:
case Thread::Runnable:
case Thread::Running:
case Thread::Dead:
case Thread::Stopped:
case Thread::Queued:
case Thread::Dying:
/* don't know, don't care */
return;
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
if (m_blocker->should_unblock(*this, now_sec, now_usec))
unblock();
return;
case Thread::Skip1SchedulerPass:
set_state(Thread::Skip0SchedulerPasses);
return;
case Thread::Skip0SchedulerPasses:
set_state(Thread::Runnable);
return;
}
}
void Scheduler::start()
{
ASSERT_INTERRUPTS_DISABLED();
auto& processor = Processor::current();
ASSERT(processor.current_thread() == nullptr);
auto& idle_thread = *processor.idle_thread();
processor.set_current_thread(idle_thread);
idle_thread.set_ticks_left(time_slice_for(idle_thread));
idle_thread.did_schedule();
idle_thread.set_initialized(true);
Processor::init_context(idle_thread);
idle_thread.set_state(Thread::Running);
processor.initialize_context_switching(idle_thread);
ASSERT_NOT_REACHED();
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
auto current_thread = Thread::current();
auto now = time_since_boot();
auto now_sec = now.tv_sec;
auto now_usec = now.tv_usec;
ScopedSpinLock lock(g_scheduler_lock);
// Check and unblock threads whose wait conditions have been met.
Scheduler::for_each_nonrunnable([&](Thread& thread) {
thread.consider_unblock(now_sec, now_usec);
return IterationDecision::Continue;
});
Process::for_each([&](Process& process) {
if (process.is_dead()) {
if (current_thread->process().pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbg() << "Scheduler: Reaped unparented process " << name << "(" << pid << "), exit status: " << exit_status.si_status;
}
2019-06-07 11:30:07 +02:00
return IterationDecision::Continue;
}
if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
process.m_alarm_deadline = 0;
process.send_signal(SIGALRM, nullptr);
}
2019-06-07 11:30:07 +02:00
return IterationDecision::Continue;
});
// Dispatch any pending signals.
Thread::for_each_living([&](Thread& thread) -> IterationDecision {
if (!thread.has_unmasked_pending_signals())
return IterationDecision::Continue;
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
// while some other process is interrupted. Otherwise a mess will be made.
if (&thread == current_thread)
return IterationDecision::Continue;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue.
// Before returning to userspace from a syscall, we will block a thread if it has any
// pending unmasked signals, allowing it to be dispatched then.
if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
return IterationDecision::Continue;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = thread.is_blocked();
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
return IterationDecision::Continue;
if (was_blocked) {
#ifdef SCHEDULER_DEBUG
dbg() << "Unblock " << thread << " due to signal";
#endif
ASSERT(thread.m_blocker != nullptr);
thread.m_blocker->set_interrupted_by_signal();
thread.unblock();
}
return IterationDecision::Continue;
});
#ifdef SCHEDULER_RUNNABLE_DEBUG
dbg() << "Non-runnables:";
Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
dbg() << "Runnables:";
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
dbg() << " " << String::format("%3u", thread.effective_priority()) << "/" << String::format("%2u", thread.priority()) << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
return IterationDecision::Continue;
});
#endif
Vector<Thread*, 128> sorted_runnables;
for_each_runnable([&sorted_runnables](auto& thread) {
sorted_runnables.append(&thread);
return IterationDecision::Continue;
});
quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
Thread* thread_to_schedule = nullptr;
for (auto* thread : sorted_runnables) {
if (thread->process().is_being_inspected())
continue;
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
continue;
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
if (!thread_to_schedule) {
thread->m_extra_priority = 0;
thread_to_schedule = thread;
} else {
thread->m_extra_priority++;
}
}
if (!thread_to_schedule)
thread_to_schedule = Processor::current().idle_thread();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: Switch to " << *thread_to_schedule << " @ " << String::format("%04x:%08x", thread_to_schedule->tss().cs, thread_to_schedule->tss().eip);
#endif
lock.unlock();
return context_switch(*thread_to_schedule);
}
bool Scheduler::yield()
{
auto& proc = Processor::current();
auto current_thread = Thread::current();
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: yielding thread " << *current_thread << " in_trap: " << proc.in_trap() << " in_irq: " << proc.in_irq();
#endif
InterruptDisabler disabler;
ASSERT(current_thread != nullptr);
if (proc.in_irq()) {
// If we're handling an IRQ we can't switch context, delay until
// exiting the trap
proc.invoke_scheduler_async();
} else if (!Scheduler::pick_next())
return false;
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: yield returns to thread " << *current_thread << " in_trap: " << proc.in_trap() << " in_irq: " << proc.in_irq();
#endif
return true;
}
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
{
InterruptDisabler disabler;
ASSERT(!Processor::current().in_irq());
if (!Thread::is_thread(beneficiary))
return false;
(void)reason;
unsigned ticks_left = Thread::current()->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return Scheduler::yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
#ifdef SCHEDULER_DEBUG
dbg() << "Scheduler: Donating " << ticks_to_donate << " ticks to " << *beneficiary << ", reason=" << reason;
#endif
beneficiary->set_ticks_left(ticks_to_donate);
Scheduler::context_switch(*beneficiary);
return false;
}
bool Scheduler::context_switch(Thread& thread)
{
thread.set_ticks_left(time_slice_for(thread));
thread.did_schedule();
auto current_thread = Thread::current();
if (current_thread == &thread)
return false;
if (current_thread) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (current_thread->state() == Thread::Running)
current_thread->set_state(Thread::Runnable);
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbg() << "Scheduler: " << *current_thread << " -> " << thread << " [" << thread.priority() << "] " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip);
#endif
}
if (!thread.is_initialized()) {
Processor::init_context(thread);
thread.set_initialized(true);
}
thread.set_state(Thread::Running);
Processor::current().switch_context(current_thread, &thread);
return true;
}
Process* Scheduler::colonel()
{
return s_colonel_process;
}
void Scheduler::initialize(u32 cpu)
{
ASSERT(&Processor::current() != nullptr); // sanity check
g_scheduler_data = new SchedulerData;
g_finalizer_wait_queue = new WaitQueue;
Thread* idle_thread = nullptr;
if (cpu == 0) {
g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release);
s_colonel_process = Process::create_kernel_process(idle_thread, "colonel", idle_loop);
ASSERT(s_colonel_process);
ASSERT(idle_thread);
idle_thread->set_priority(THREAD_PRIORITY_MIN);
idle_thread->set_name(String::format("idle thread #%u", cpu));
} else {
ASSERT(s_colonel_process);
idle_thread = s_colonel_process->create_kernel_thread(idle_loop, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), false);
ASSERT(idle_thread);
}
Processor::current().set_idle_thread(*idle_thread);
}
void Scheduler::timer_tick(const RegisterState& regs)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
auto current_thread = Processor::current().current_thread();
if (!current_thread)
return;
++g_uptime;
g_timeofday = TimeManagement::now_as_timeval();
if (current_thread->process().is_profiling()) {
SmapDisabler disabler;
auto backtrace = current_thread->raw_backtrace(regs.ebp, regs.eip);
auto& sample = Profiling::next_sample_slot();
sample.pid = current_thread->process().pid();
sample.tid = current_thread->tid();
sample.timestamp = g_uptime;
for (size_t i = 0; i < min(backtrace.size(), Profiling::max_stack_frame_count); ++i) {
sample.frames[i] = backtrace[i];
}
}
TimerQueue::the().fire();
if (current_thread->tick())
return;
ASSERT_INTERRUPTS_DISABLED();
ASSERT(Processor::current().in_irq());
Processor::current().invoke_scheduler_async();
}
void Scheduler::invoke_async()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!Processor::current().in_irq());
pick_next();
}
void Scheduler::idle_loop()
{
dbg() << "Scheduler: idle loop on CPU #" << Processor::current().id();
ASSERT(are_interrupts_enabled());
for (;;) {
asm("hlt");
yield();
}
}
}