ladybird/Kernel/Heap/kmalloc.cpp

381 lines
11 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
/*
* Really really *really* Q&D malloc() and free() implementations
* just to get going. Don't ever let anyone see this shit. :^)
*/
#include <AK/Assertions.h>
#include <AK/Types.h>
#include <Kernel/Debug.h>
#include <Kernel/Heap/Heap.h>
#include <Kernel/Heap/kmalloc.h>
#include <Kernel/KSyms.h>
2021-08-22 01:37:17 +02:00
#include <Kernel/Locking/Spinlock.h>
#include <Kernel/Memory/MemoryManager.h>
#include <Kernel/Panic.h>
#include <Kernel/PerformanceManager.h>
#include <Kernel/Sections.h>
#include <Kernel/StdLib.h>
#if ARCH(I386)
static constexpr size_t CHUNK_SIZE = 32;
#else
static constexpr size_t CHUNK_SIZE = 64;
#endif
#define POOL_SIZE (2 * MiB)
#define ETERNAL_RANGE_SIZE (4 * MiB)
namespace std {
const nothrow_t nothrow;
}
2021-08-22 01:37:17 +02:00
static RecursiveSpinlock s_lock; // needs to be recursive because of dump_backtrace()
struct KmallocSubheap {
KmallocSubheap(u8* base, size_t size)
: allocator(base, size)
{
}
IntrusiveListNode<KmallocSubheap> list_node;
Heap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE> allocator;
};
struct KmallocGlobalData {
KmallocGlobalData(u8* initial_heap, size_t initial_heap_size)
{
add_subheap(initial_heap, initial_heap_size);
}
void add_subheap(u8* storage, size_t storage_size)
{
dbgln("Adding kmalloc subheap @ {} with size {}", storage, storage_size);
auto* subheap = new (storage) KmallocSubheap(storage + PAGE_SIZE, storage_size - PAGE_SIZE);
subheaps.append(*subheap);
}
void* allocate(size_t size)
{
VERIFY(!expansion_in_progress);
for (auto& subheap : subheaps) {
if (auto* ptr = subheap.allocator.allocate(size))
return ptr;
}
if (!try_expand()) {
PANIC("OOM when trying to expand kmalloc heap.");
}
return allocate(size);
}
void deallocate(void* ptr)
{
VERIFY(!expansion_in_progress);
for (auto& subheap : subheaps) {
if (subheap.allocator.contains(ptr)) {
subheap.allocator.deallocate(ptr);
return;
}
}
PANIC("Bogus pointer {:p} passed to kfree()", ptr);
}
size_t allocated_bytes() const
{
size_t total = 0;
for (auto const& subheap : subheaps)
total += subheap.allocator.allocated_bytes();
return total;
}
size_t free_bytes() const
{
size_t total = 0;
for (auto const& subheap : subheaps)
total += subheap.allocator.free_bytes();
return total;
}
bool try_expand()
{
VERIFY(!expansion_in_progress);
TemporaryChange change(expansion_in_progress, true);
auto new_subheap_base = expansion_data->next_virtual_address;
size_t new_subheap_size = 1 * MiB;
if (!expansion_data->virtual_range.contains(new_subheap_base, new_subheap_size)) {
// FIXME: Dare to return false and allow kmalloc() to fail!
PANIC("Out of address space when expanding kmalloc heap.");
}
auto physical_pages_or_error = MM.commit_user_physical_pages(new_subheap_size / PAGE_SIZE);
if (physical_pages_or_error.is_error()) {
// FIXME: Dare to return false!
PANIC("Out of physical pages when expanding kmalloc heap.");
}
auto physical_pages = physical_pages_or_error.release_value();
expansion_data->next_virtual_address = expansion_data->next_virtual_address.offset(new_subheap_size);
auto cpu_supports_nx = Processor::current().has_feature(CPUFeature::NX);
SpinlockLocker mm_locker(Memory::s_mm_lock);
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
for (auto vaddr = new_subheap_base; !physical_pages.is_empty(); vaddr = vaddr.offset(PAGE_SIZE)) {
// FIXME: We currently leak physical memory when mapping it into the kmalloc heap.
auto& page = physical_pages.take_one().leak_ref();
auto* pte = MM.pte(MM.kernel_page_directory(), vaddr);
VERIFY(pte);
pte->set_physical_page_base(page.paddr().get());
pte->set_global(true);
pte->set_user_allowed(false);
pte->set_writable(true);
if (cpu_supports_nx)
pte->set_execute_disabled(true);
pte->set_present(true);
}
MM.flush_tlb(&MM.kernel_page_directory(), new_subheap_base, new_subheap_size / PAGE_SIZE);
add_subheap(new_subheap_base.as_ptr(), new_subheap_size);
return true;
}
void enable_expansion()
{
// FIXME: This range can be much bigger on 64-bit, but we need to figure something out for 32-bit.
auto virtual_range = MM.kernel_page_directory().range_allocator().try_allocate_anywhere(64 * MiB, 1 * MiB);
expansion_data = KmallocGlobalData::ExpansionData {
.virtual_range = virtual_range.value(),
.next_virtual_address = virtual_range.value().base(),
};
// Make sure the entire kmalloc VM range is backed by page tables.
// This avoids having to deal with lazy page table allocation during heap expansion.
SpinlockLocker mm_locker(Memory::s_mm_lock);
SpinlockLocker pd_locker(MM.kernel_page_directory().get_lock());
for (auto vaddr = virtual_range.value().base(); vaddr < virtual_range.value().end(); vaddr = vaddr.offset(PAGE_SIZE)) {
MM.ensure_pte(MM.kernel_page_directory(), vaddr);
}
}
struct ExpansionData {
Memory::VirtualRange virtual_range;
VirtualAddress next_virtual_address;
};
Optional<ExpansionData> expansion_data;
IntrusiveList<&KmallocSubheap::list_node> subheaps;
bool expansion_in_progress { false };
};
READONLY_AFTER_INIT static KmallocGlobalData* g_kmalloc_global;
alignas(KmallocGlobalData) static u8 g_kmalloc_global_heap[sizeof(KmallocGlobalData)];
// Treat the heap as logically separate from .bss
__attribute__((section(".heap"))) static u8 kmalloc_eternal_heap[ETERNAL_RANGE_SIZE];
__attribute__((section(".heap"))) static u8 kmalloc_pool_heap[POOL_SIZE];
static size_t g_kmalloc_bytes_eternal = 0;
static size_t g_kmalloc_call_count;
static size_t g_kfree_call_count;
static size_t g_nested_kfree_calls;
bool g_dump_kmalloc_stacks;
static u8* s_next_eternal_ptr;
READONLY_AFTER_INIT static u8* s_end_of_eternal_range;
void kmalloc_enable_expand()
{
g_kmalloc_global->enable_expansion();
}
static inline void kmalloc_verify_nospinlock_held()
{
// Catch bad callers allocating under spinlock.
if constexpr (KMALLOC_VERIFY_NO_SPINLOCK_HELD) {
VERIFY(!Processor::in_critical());
}
}
UNMAP_AFTER_INIT void kmalloc_init()
{
// Zero out heap since it's placed after end_of_kernel_bss.
memset(kmalloc_eternal_heap, 0, sizeof(kmalloc_eternal_heap));
memset(kmalloc_pool_heap, 0, sizeof(kmalloc_pool_heap));
g_kmalloc_global = new (g_kmalloc_global_heap) KmallocGlobalData(kmalloc_pool_heap, sizeof(kmalloc_pool_heap));
s_lock.initialize();
s_next_eternal_ptr = kmalloc_eternal_heap;
s_end_of_eternal_range = s_next_eternal_ptr + sizeof(kmalloc_eternal_heap);
}
void* kmalloc_eternal(size_t size)
{
kmalloc_verify_nospinlock_held();
size = round_up_to_power_of_two(size, sizeof(void*));
SpinlockLocker lock(s_lock);
void* ptr = s_next_eternal_ptr;
s_next_eternal_ptr += size;
VERIFY(s_next_eternal_ptr < s_end_of_eternal_range);
g_kmalloc_bytes_eternal += size;
return ptr;
}
void* kmalloc(size_t size)
{
kmalloc_verify_nospinlock_held();
SpinlockLocker lock(s_lock);
++g_kmalloc_call_count;
if (g_dump_kmalloc_stacks && Kernel::g_kernel_symbols_available) {
dbgln("kmalloc({})", size);
Kernel::dump_backtrace();
}
void* ptr = g_kmalloc_global->allocate(size);
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread)
PerformanceManager::add_kmalloc_perf_event(*current_thread, size, (FlatPtr)ptr);
return ptr;
}
void kfree_sized(void* ptr, size_t size)
{
(void)size;
return kfree(ptr);
}
2020-06-05 22:01:30 -06:00
void kfree(void* ptr)
{
if (!ptr)
return;
kmalloc_verify_nospinlock_held();
SpinlockLocker lock(s_lock);
++g_kfree_call_count;
++g_nested_kfree_calls;
if (g_nested_kfree_calls == 1) {
Thread* current_thread = Thread::current();
if (!current_thread)
current_thread = Processor::idle_thread();
if (current_thread)
PerformanceManager::add_kfree_perf_event(*current_thread, 0, (FlatPtr)ptr);
}
g_kmalloc_global->deallocate(ptr);
--g_nested_kfree_calls;
2020-06-05 22:01:30 -06:00
}
size_t kmalloc_good_size(size_t size)
{
return size;
}
[[gnu::malloc, gnu::alloc_size(1), gnu::alloc_align(2)]] static void* kmalloc_aligned_cxx(size_t size, size_t alignment)
{
VERIFY(alignment <= 4096);
void* ptr = kmalloc(size + alignment + sizeof(ptrdiff_t));
if (ptr == nullptr)
return nullptr;
size_t max_addr = (size_t)ptr + alignment;
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
((ptrdiff_t*)aligned_ptr)[-1] = (ptrdiff_t)((u8*)aligned_ptr - (u8*)ptr);
return aligned_ptr;
}
void* operator new(size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, const std::nothrow_t&) noexcept
{
return kmalloc(size);
}
void* operator new(size_t size, std::align_val_t al)
{
void* ptr = kmalloc_aligned_cxx(size, (size_t)al);
VERIFY(ptr);
return ptr;
}
void* operator new(size_t size, std::align_val_t al, const std::nothrow_t&) noexcept
{
return kmalloc_aligned_cxx(size, (size_t)al);
}
void* operator new[](size_t size)
{
void* ptr = kmalloc(size);
VERIFY(ptr);
return ptr;
}
void* operator new[](size_t size, const std::nothrow_t&) noexcept
{
return kmalloc(size);
}
void operator delete(void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete(void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void operator delete(void* ptr, size_t, std::align_val_t) noexcept
{
return kfree_aligned(ptr);
}
void operator delete[](void*) noexcept
{
// All deletes in kernel code should have a known size.
VERIFY_NOT_REACHED();
}
void operator delete[](void* ptr, size_t size) noexcept
{
return kfree_sized(ptr, size);
}
void get_kmalloc_stats(kmalloc_stats& stats)
{
SpinlockLocker lock(s_lock);
stats.bytes_allocated = g_kmalloc_global->allocated_bytes();
stats.bytes_free = g_kmalloc_global->free_bytes();
stats.bytes_eternal = g_kmalloc_bytes_eternal;
stats.kmalloc_call_count = g_kmalloc_call_count;
stats.kfree_call_count = g_kfree_call_count;
}