This class works by eagerly allocating 1MB of virtual memory but only
adding physical pages on demand. In other words, when you append to it,
its memory usage will increase by 1 page whenever you append across a
page boundary (4KB.)
Instead of dumping the dying thread's backtrace in the signal handling
code, wait until we're finalizing the thread. Since signalling happens
during scheduling, the less work we do there the better.
Basically the less that happens during a scheduler pass the better. :^)
This has several significant changes to the networking stack.
* Significant refactoring of the TCP state machine. Right now it's
probably more fragile than it used to be, but handles quite a lot
more of the handshake process.
* `TCPSocket` holds a `NetworkAdapter*`, assigned during `connect()` or
`bind()`, whichever comes first.
* `listen()` is now virtual in `Socket` and intended to be implemented
in its child classes
* `listen()` no longer works without `bind()` - this is a bit of a
regression, but listening sockets didn't work at all before, so it's
not possible to observe the regression.
* A file is exposed at `/proc/net_tcp`, which is a JSON document listing
the current TCP sockets with a bit of metadata.
* There's an `ETHERNET_VERY_DEBUG` flag for dumping packet's content out
to `kprintf`. It is, indeed, _very debug_.
KBuffers are now zero-filled on demand instead of up front. This means
that you can create a huge KBuffer and it will only take up VM, not
physical pages (until you access them.)
We were short-circuiting the page fault handler a little too eagerly
for page-not-present faults in kernel memory.
If the current page directory already has up-to-date mapps for kernel
memory, allow it to progress to checking for zero-fill conditions.
This will enable us to have lazily populated kernel regions.
GWindow::~GWindow() deletes the main widget, assuming it was
allocated with new; this is what all other applications do,
so heap-allocate the terminal widget as well even though it's
not necessary in this case.
This allows the page fault code to find the owning PageDirectory and
corresponding process for faulting regions.
The mapping is implemented as a global hash map right now, which is
definitely not optimal. We can come up with something better when it
becomes necessary.
Sometimes you're only interested in either user OR kernel regions but
not both. Let's break this into two functions so the caller can choose
what he's interested in.
If we were using a ProcessPagingScope to temporarily go into another
process's page tables, things would fall apart when hitting a kernel
NP fault, since we'd clone the kernel page directory entry into the
*currently active process's* page directory rather than cloning it
into the *currently active* page directory.
These widgets can only display a single column from the underlying data
model, and it was previously hard-coded to use column 0. Now you can
use any column you like.
This ensures the pipe fds don't leak into child processes.
This manifested as the Shell (and all processes started
from the shell) having two mysterious FIFOs open. This
was happening because of the Terminal, which the shell
was spawned form, leaking its CEventLoop wake pipe fds.
In the userspace, this mimics the Linux pipe2() syscall;
in the kernel, the Process::sys$pipe() now always accepts
a flags argument, the no-argument pipe() syscall is now a
userspace wrapper over pipe2().
Instead of generating ByteBuffers and keeping those lying around, have
these filesystems generate KBuffers instead. These are way less spooky
to leave around for a while.
Since FileDescription will keep a generated file buffer around until
userspace has read the whole thing, this prevents trivially exhausting
the kmalloc heap by opening many files in /proc for example.
The code responsible for generating each /proc file is not perfectly
efficient and many of them still use ByteBuffers internally but they
at least go away when we return now. :^)
A KBuffer always contains a valid KBufferImpl. If you need a "null"
state buffer, use Optional<KBuffer>.
This makes KBuffer very easy to work with and pass around, just like
ByteBuffer before it.
There's no need for send_ipv4() to take a ByteBuffer&&, the data is
immediately cooked into a packet and transmitted. Instead, just pass
it the address+length of whatever buffer we've been using locally.
The more we can reduce the pressure on kmalloc the better. :^)
The situations in IPv4Socket and LocalSocket were mirrors of each other
where one had implemented read/write as wrappers and the other had
sendto/recvfrom as wrappers.
Instead of this silliness, move read and write up to the Socket base.
Then mark them final, so subclasses have no choice but to implement
sendto and recvfrom.
This has a known bug in that you can't specify a negative size value.
This bug stems from the argument parser, and once it's fixed there,
everything should work here.
This memory is not accessible to userspace and comes from the kernel
page allocator, not from the kmalloc heap. This makes it ideal for
larger allocations.