Sometimes a physical underlying page may be there, but we may be
unable to allocate a page table that may be needed to map it. Bubble
up such mapping errors so that they can be handled more appropriately.
If allocating a page table triggers purging memory, we need to call
quickmap_pd again to make sure the underlying physical page is
remapped to the correct one. This is needed because purging itself
may trigger calls to ensure_pte as well.
Fixes#3370
When cloning a purgeable memory region (which happens on fork),
we need to preserve the "was purged" and "volatile" state of the
original region, or they will always appear as non-volatile and
unpurged regions in the child process.
Fixes#3374.
Add an ExpandableHeap and switch kmalloc to use it, which allows
for the kmalloc heap to grow as needed.
In order to make heap expansion to work, we keep around a 1 MiB backup
memory region, because creating a region would require space in the
same heap. This means, the heap will grow as soon as the reported
utilization is less than 1 MiB. It will also return memory if an entire
subheap is no longer needed, although that is rarely possible.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
Rather than hardcoding where the kmalloc pool should be, place
it at the end of the kernel image instead. This avoids corrupting
global variables or other parts of the kernel as it grows.
Fixes#3257
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".
Let's use the correct name, at least in code.
Only changes the name of the constants, no other behavior change.
This is something I've been meaning to do for a long time, and here we
finally go. This patch moves all sys$foo functions out of Process.cpp
and into files in Kernel/Syscalls/.
It's not exactly one syscall per file (although it could be, but I got
a bit tired of the repetitive work here..)
This makes hacking on individual syscalls a lot less painful since you
don't have to rebuild nearly as much code every time. I'm also hopeful
that this makes it easier to understand individual syscalls. :^)
MemoryManager::quickmap_pd and MemoryManager::quickmap_pt can only
be called by one processor at the time anyway, since anything using
these must have the MM lock held. So, no need to inform the other
CPUs to flush their TLBs, we can just flush our own.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
When delivering urgent signals to the current thread
we need to check if we should be unblocked, and if not
we need to yield to another process.
We also need to make sure that we suppress context switches
during Process::exec() so that we don't clobber the registers
that it sets up (eip mainly) by a context switch. To be able
to do that we add the concept of a critical section, which are
similar to Process::m_in_irq but different in that they can be
requested at any time. Calls to Scheduler::yield and
Scheduler::donate_to will return instantly without triggering
a context switch, but the processor will then asynchronously
trigger a context switch once the critical section is left.
- If rdseed is not available, fallback to rdrand.
- If rdrand is not available, block for entropy, or use insecure prng
depending on if user wants fast or good random.
Add a MappedROM::find_chunk_starting_with() helper since that's a very
common usage pattern in clients of this code.
Also convert MultiProcessorParser from a persistent singleton object
to a temporary object constructed via a failable factory function.
This patch adds a MappedROM abstraction to the Kernel VM subsystem.
It's basically the read-only byte buffer equivalent of a TypedMapping.
We use this in the ACPI and MP table parsers to scan for interesting
stuff in low memory instead of doing a bunch of address arithmetic.