ladybird/AK/BumpAllocator.h
R-Goc f380b4b95b AK: Port BumpAllocator.h to Windows
Done by forward declaring the required functions and defining the needed
constants. The defines shouldn't collide as they are from memoryapi.h.
This is done to avoid including windows.h.
2024-12-08 17:36:37 -07:00

222 lines
7.5 KiB
C++

/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Atomic.h>
#include <AK/StdLibExtras.h>
#include <AK/Types.h>
#include <AK/kmalloc.h>
#if !defined(AK_OS_WINDOWS)
# include <sys/mman.h>
#else
extern "C" __declspec(dllimport) void* __stdcall VirtualAlloc(size_t dwSize, u32 flAllocationType, u32 flProtect);
extern "C" __declspec(dllimport) bool __stdcall VirtualFree(void* lpAddress, size_t dwSize, u32 dwFreeType);
# define MEM_COMMIT 0x00001000
# define PAGE_READWRITE 0x04
# define MEM_RELEASE 0x00008000
#endif
namespace AK {
template<bool use_mmap = false, size_t chunk_size = use_mmap ? 4 * MiB : 4 * KiB>
class BumpAllocator {
public:
BumpAllocator()
{
if constexpr (use_mmap)
m_chunk_size = chunk_size;
else
m_chunk_size = kmalloc_good_size(chunk_size);
}
~BumpAllocator()
{
deallocate_all();
}
void* allocate(size_t size, size_t align)
{
VERIFY(size < m_chunk_size - sizeof(ChunkHeader));
if (!m_current_chunk) {
if (!allocate_a_chunk())
return nullptr;
}
allocate_again:;
VERIFY(m_current_chunk != 0);
auto aligned_ptr = align_up_to(m_byte_offset_into_current_chunk + m_current_chunk, align);
auto next_offset = aligned_ptr + size - m_current_chunk;
if (next_offset > m_chunk_size) {
if (!allocate_a_chunk())
return nullptr;
goto allocate_again;
}
m_byte_offset_into_current_chunk = next_offset;
return (void*)aligned_ptr;
}
void deallocate_all()
{
if (!m_head_chunk)
return;
// Note that 'cache_filled' is just an educated guess, and we don't rely on it.
// If we determine 'cache_filled=true' and the cache becomes empty in the meantime,
// then we haven't lost much; it was a close call anyway.
// If we determine 'cache_filled=false' and the cache becomes full in the meantime,
// then we'll end up with a different chunk to munmap(), no big difference.
bool cache_filled = s_unused_allocation_cache.load(MemoryOrder::memory_order_relaxed);
for_each_chunk([&](auto chunk) {
if (!cache_filled) {
cache_filled = true;
(reinterpret_cast<ChunkHeader*>(chunk))->next_chunk = 0;
chunk = s_unused_allocation_cache.exchange(chunk);
if (!chunk)
return;
// The cache got filled in the meantime. Oh well, we have to call munmap() anyway.
}
if constexpr (use_mmap) {
#if defined(AK_OS_WINDOWS)
VirtualFree((LPVOID)chunk, m_chunk_size, MEM_RELEASE);
#else
munmap((void*)chunk, m_chunk_size);
#endif
} else {
kfree_sized((void*)chunk, m_chunk_size);
}
});
}
protected:
template<typename TFn>
void for_each_chunk(TFn&& fn)
{
auto head_chunk = m_head_chunk;
while (head_chunk) {
auto& chunk_header = *reinterpret_cast<ChunkHeader const*>(head_chunk);
VERIFY(chunk_header.magic == chunk_magic);
if (head_chunk == m_current_chunk)
VERIFY(chunk_header.next_chunk == 0);
auto next_chunk = chunk_header.next_chunk;
fn(head_chunk);
head_chunk = next_chunk;
}
}
bool allocate_a_chunk()
{
// dbgln("Allocated {} entries in previous chunk and have {} unusable bytes", m_allocations_in_previous_chunk, m_chunk_size - m_byte_offset_into_current_chunk);
// m_allocations_in_previous_chunk = 0;
void* new_chunk = reinterpret_cast<void*>(s_unused_allocation_cache.exchange(0));
if (!new_chunk) {
if constexpr (use_mmap) {
#ifdef AK_OS_SERENITY
new_chunk = serenity_mmap(nullptr, m_chunk_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_RANDOMIZED | MAP_PRIVATE, 0, 0, m_chunk_size, "BumpAllocator Chunk");
#elif defined(AK_OS_WINDOWS)
new_chunk = VirtualAlloc(NULL, m_chunk_size, MEM_COMMIT, PAGE_READWRITE);
#else
new_chunk = mmap(nullptr, m_chunk_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#endif
#if defined(AK_OS_WINDOWS)
if (new_chunk == NULL)
return false;
#else
if (new_chunk == MAP_FAILED)
return false;
#endif
} else {
new_chunk = kmalloc(m_chunk_size);
if (!new_chunk)
return false;
}
}
auto& new_header = *reinterpret_cast<ChunkHeader*>(new_chunk);
new_header.magic = chunk_magic;
new_header.next_chunk = 0;
m_byte_offset_into_current_chunk = sizeof(ChunkHeader);
if (!m_head_chunk) {
VERIFY(!m_current_chunk);
m_head_chunk = reinterpret_cast<FlatPtr>(new_chunk);
m_current_chunk = reinterpret_cast<FlatPtr>(new_chunk);
return true;
}
VERIFY(m_current_chunk);
auto& old_header = *reinterpret_cast<ChunkHeader*>(m_current_chunk);
VERIFY(old_header.magic == chunk_magic);
VERIFY(old_header.next_chunk == 0);
old_header.next_chunk = reinterpret_cast<FlatPtr>(new_chunk);
m_current_chunk = reinterpret_cast<FlatPtr>(new_chunk);
return true;
}
constexpr static FlatPtr chunk_magic = explode_byte(0xdf);
struct ChunkHeader {
FlatPtr magic;
FlatPtr next_chunk;
};
FlatPtr m_head_chunk { 0 };
FlatPtr m_current_chunk { 0 };
size_t m_byte_offset_into_current_chunk { 0 };
size_t m_chunk_size { 0 };
static Atomic<FlatPtr> s_unused_allocation_cache;
};
template<typename T, bool use_mmap = false, size_t chunk_size = use_mmap ? 4 * MiB : 4 * KiB>
class UniformBumpAllocator : protected BumpAllocator<use_mmap, chunk_size> {
using Allocator = BumpAllocator<use_mmap, chunk_size>;
public:
UniformBumpAllocator() = default;
~UniformBumpAllocator()
{
destroy_all();
}
template<typename... Args>
T* allocate(Args&&... args)
{
auto ptr = (T*)Allocator::allocate(sizeof(T), alignof(T));
if (!ptr)
return nullptr;
return new (ptr) T { forward<Args>(args)... };
}
void deallocate_all()
{
destroy_all();
Allocator::deallocate_all();
}
void destroy_all()
{
this->for_each_chunk([&](auto chunk) {
auto base_ptr = align_up_to(chunk + sizeof(typename Allocator::ChunkHeader), alignof(T));
// Compute the offset of the first byte *after* this chunk:
FlatPtr end_offset = base_ptr + this->m_chunk_size - chunk - sizeof(typename Allocator::ChunkHeader);
if (chunk == this->m_current_chunk)
end_offset = this->m_byte_offset_into_current_chunk;
// Compute the offset of the first byte *after* the last valid object, in case the end of the chunk does not align with the end of an object:
end_offset = (end_offset / sizeof(T)) * sizeof(T);
for (; base_ptr - chunk < end_offset; base_ptr += sizeof(T))
reinterpret_cast<T*>(base_ptr)->~T();
});
}
};
template<bool use_mmap, size_t size>
inline Atomic<FlatPtr> BumpAllocator<use_mmap, size>::s_unused_allocation_cache { 0 };
}
#if USING_AK_GLOBALLY
using AK::BumpAllocator;
using AK::UniformBumpAllocator;
#endif