2020-01-18 09:38:21 +01:00
/*
2021-03-12 12:15:46 +01:00
* Copyright ( c ) 2018 - 2021 , Andreas Kling < kling @ serenityos . org >
2020-01-18 09:38:21 +01:00
* All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions are met :
*
* 1. Redistributions of source code must retain the above copyright notice , this
* list of conditions and the following disclaimer .
*
* 2. Redistributions in binary form must reproduce the above copyright notice ,
* this list of conditions and the following disclaimer in the documentation
* and / or other materials provided with the distribution .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS " AS IS "
* AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL
* DAMAGES ( INCLUDING , BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES ; LOSS OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY ,
* OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE .
*/
2019-07-28 23:44:01 +10:00
# include <AK/ByteBuffer.h>
2020-08-24 19:35:19 -06:00
# include <AK/Singleton.h>
2020-03-23 13:45:10 +01:00
# include <AK/StringView.h>
2020-06-24 14:07:28 -06:00
# include <Kernel/IO.h>
2019-06-07 11:43:58 +02:00
# include <Kernel/Process.h>
2021-02-20 08:27:50 +02:00
# include <Kernel/Storage/ATA.h>
2020-12-19 12:50:57 +02:00
# include <Kernel/Storage/IDEChannel.h>
# include <Kernel/Storage/IDEController.h>
# include <Kernel/Storage/PATADiskDevice.h>
2019-06-07 11:43:58 +02:00
# include <Kernel/VM/MemoryManager.h>
2021-02-05 23:36:38 -07:00
# include <Kernel/WorkQueue.h>
2018-11-10 15:15:31 +01:00
2020-02-16 01:27:42 +01:00
namespace Kernel {
2019-07-28 23:44:01 +10:00
# define PATA_PRIMARY_IRQ 14
# define PATA_SECONDARY_IRQ 15
2018-11-10 15:15:31 +01:00
2019-11-13 19:29:16 +02:00
# define PCI_Mass_Storage_Class 0x1
# define PCI_IDE_Controller_Subclass 0x1
2020-08-24 19:35:19 -06:00
2021-03-27 09:01:00 +03:00
UNMAP_AFTER_INIT NonnullRefPtr < IDEChannel > IDEChannel : : create ( const IDEController & controller , IOAddressGroup io_group , ChannelType type )
2018-10-16 14:17:43 +02:00
{
2021-03-27 09:01:00 +03:00
return adopt ( * new IDEChannel ( controller , io_group , type ) ) ;
2018-10-16 14:17:43 +02:00
}
2021-03-27 21:44:25 +03:00
UNMAP_AFTER_INIT NonnullRefPtr < IDEChannel > IDEChannel : : create ( const IDEController & controller , u8 irq , IOAddressGroup io_group , ChannelType type )
{
return adopt ( * new IDEChannel ( controller , irq , io_group , type ) ) ;
}
2020-12-19 13:56:12 +02:00
RefPtr < StorageDevice > IDEChannel : : master_device ( ) const
2020-12-19 12:50:57 +02:00
{
return m_master ;
}
2021-01-29 19:37:40 +00:00
2020-12-19 13:56:12 +02:00
RefPtr < StorageDevice > IDEChannel : : slave_device ( ) const
2020-12-19 12:50:57 +02:00
{
return m_slave ;
}
2021-03-27 21:44:25 +03:00
UNMAP_AFTER_INIT void IDEChannel : : initialize ( )
2018-10-16 14:17:43 +02:00
{
2020-01-22 22:23:50 +01:00
disable_irq ( ) ;
2021-03-27 09:01:00 +03:00
dbgln_if ( PATA_DEBUG , " IDEChannel: {} IO base: {} " , channel_type_string ( ) , m_io_group . io_base ( ) ) ;
dbgln_if ( PATA_DEBUG , " IDEChannel: {} control base: {} " , channel_type_string ( ) , m_io_group . control_base ( ) ) ;
2021-03-27 09:22:25 +03:00
if ( m_io_group . bus_master_base ( ) . has_value ( ) )
dbgln_if ( PATA_DEBUG , " IDEChannel: {} bus master base: {} " , channel_type_string ( ) , m_io_group . bus_master_base ( ) . value ( ) ) ;
else
dbgln_if ( PATA_DEBUG , " IDEChannel: {} bus master base disabled " , channel_type_string ( ) ) ;
2021-03-27 09:01:00 +03:00
m_parent_controller - > enable_pin_based_interrupts ( ) ;
2019-07-28 23:44:01 +10:00
detect_disks ( ) ;
2021-02-05 06:51:47 +02:00
// Note: calling to detect_disks could generate an interrupt, clear it if that's the case
clear_pending_interrupts ( ) ;
2018-10-16 14:17:43 +02:00
}
2021-03-27 21:44:25 +03:00
UNMAP_AFTER_INIT IDEChannel : : IDEChannel ( const IDEController & controller , u8 irq , IOAddressGroup io_group , ChannelType type )
: IRQHandler ( irq )
, m_channel_type ( type )
, m_io_group ( io_group )
, m_parent_controller ( controller )
{
initialize ( ) ;
}
UNMAP_AFTER_INIT IDEChannel : : IDEChannel ( const IDEController & controller , IOAddressGroup io_group , ChannelType type )
: IRQHandler ( type = = ChannelType : : Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ )
, m_channel_type ( type )
, m_io_group ( io_group )
, m_parent_controller ( controller )
{
initialize ( ) ;
}
2021-02-05 06:51:47 +02:00
void IDEChannel : : clear_pending_interrupts ( ) const
{
m_io_group . io_base ( ) . offset ( ATA_REG_STATUS ) . in < u8 > ( ) ;
}
2021-02-20 00:00:19 +01:00
UNMAP_AFTER_INIT IDEChannel : : ~ IDEChannel ( )
2019-05-19 04:40:30 +02:00
{
}
2021-03-27 09:01:00 +03:00
void IDEChannel : : start_request ( AsyncBlockDeviceRequest & request , bool is_slave , u16 capabilities )
2020-03-06 03:22:53 +02:00
{
2021-03-27 09:53:59 +03:00
LOCKER ( m_lock ) ;
VERIFY ( m_current_request . is_null ( ) ) ;
2021-01-29 19:37:40 +00:00
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel::start_request " ) ;
2021-01-29 19:37:40 +00:00
2021-03-27 09:53:59 +03:00
m_current_request = request ;
2020-11-02 11:16:01 -07:00
m_current_request_block_index = 0 ;
m_current_request_flushing_cache = false ;
2021-03-27 09:01:00 +03:00
if ( request . request_type ( ) = = AsyncBlockDeviceRequest : : Read )
ata_read_sectors ( is_slave , capabilities ) ;
else
ata_write_sectors ( is_slave , capabilities ) ;
2020-11-02 11:16:01 -07:00
}
2020-12-19 12:50:57 +02:00
void IDEChannel : : complete_current_request ( AsyncDeviceRequest : : RequestResult result )
2020-11-02 11:16:01 -07:00
{
// NOTE: this may be called from the interrupt handler!
2021-02-23 20:42:32 +01:00
VERIFY ( m_current_request ) ;
VERIFY ( m_request_lock . is_locked ( ) ) ;
2020-11-02 11:16:01 -07:00
// Now schedule reading back the buffer as soon as we leave the irq handler.
// This is important so that we can safely write the buffer back,
// which could cause page faults. Note that this may be called immediately
// before Processor::deferred_call_queue returns!
2021-02-05 23:36:38 -07:00
g_io_work - > queue ( [ this , result ] ( ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel::complete_current_request result: {} " , ( int ) result ) ;
2021-03-27 09:53:59 +03:00
LOCKER ( m_lock ) ;
2021-02-23 20:42:32 +01:00
VERIFY ( m_current_request ) ;
2021-03-27 09:53:59 +03:00
auto current_request = m_current_request ;
m_current_request . clear ( ) ;
current_request - > complete ( result ) ;
2020-11-02 11:16:01 -07:00
} ) ;
2020-03-06 03:22:53 +02:00
}
2019-07-03 21:17:35 +02:00
static void print_ide_status ( u8 status )
2018-11-10 15:15:31 +01:00
{
2021-03-12 12:15:46 +01:00
dbgln ( " IDEChannel: print_ide_status: DRQ={} BSY={}, DRDY={}, DSC={}, DF={}, CORR={}, IDX={}, ERR={} " ,
( status & ATA_SR_DRQ ) ! = 0 ,
( status & ATA_SR_BSY ) ! = 0 ,
( status & ATA_SR_DRDY ) ! = 0 ,
( status & ATA_SR_DSC ) ! = 0 ,
( status & ATA_SR_DF ) ! = 0 ,
( status & ATA_SR_CORR ) ! = 0 ,
( status & ATA_SR_IDX ) ! = 0 ,
( status & ATA_SR_ERR ) ! = 0 ) ;
2018-11-10 15:15:31 +01:00
}
2021-01-29 19:37:40 +00:00
void IDEChannel : : try_disambiguate_error ( )
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
2021-01-29 19:37:40 +00:00
dbgln ( " IDEChannel: Error cause: " ) ;
switch ( m_device_error ) {
case ATA_ER_BBK :
dbgln ( " IDEChannel: - Bad block " ) ;
break ;
case ATA_ER_UNC :
dbgln ( " IDEChannel: - Uncorrectable data " ) ;
break ;
case ATA_ER_MC :
dbgln ( " IDEChannel: - Media changed " ) ;
break ;
case ATA_ER_IDNF :
dbgln ( " IDEChannel: - ID mark not found " ) ;
break ;
case ATA_ER_MCR :
dbgln ( " IDEChannel: - Media change request " ) ;
break ;
case ATA_ER_ABRT :
dbgln ( " IDEChannel: - Command aborted " ) ;
break ;
case ATA_ER_TK0NF :
dbgln ( " IDEChannel: - Track 0 not found " ) ;
break ;
case ATA_ER_AMNF :
dbgln ( " IDEChannel: - No address mark " ) ;
break ;
default :
dbgln ( " IDEChannel: - No one knows " ) ;
break ;
}
}
2020-12-19 12:50:57 +02:00
void IDEChannel : : handle_irq ( const RegisterState & )
2018-11-10 15:15:31 +01:00
{
2020-12-19 12:50:57 +02:00
u8 status = m_io_group . io_base ( ) . offset ( ATA_REG_STATUS ) . in < u8 > ( ) ;
2020-06-24 14:07:28 -06:00
m_entropy_source . add_random_event ( status ) ;
2020-11-02 11:16:01 -07:00
ScopedSpinLock lock ( m_request_lock ) ;
2021-03-12 12:15:46 +01:00
dbgln_if ( PATA_DEBUG , " IDEChannel: interrupt: DRQ={}, BSY={}, DRDY={} " ,
( status & ATA_SR_DRQ ) ! = 0 ,
( status & ATA_SR_BSY ) ! = 0 ,
( status & ATA_SR_DRDY ) ! = 0 ) ;
2020-11-02 11:16:01 -07:00
if ( ! m_current_request ) {
2021-01-09 18:51:44 +01:00
dbgln ( " IDEChannel: IRQ but no pending request! " ) ;
2020-11-02 11:16:01 -07:00
return ;
}
2019-05-24 04:17:15 +02:00
if ( status & ATA_SR_ERR ) {
2019-02-11 11:38:14 +01:00
print_ide_status ( status ) ;
2020-12-19 12:50:57 +02:00
m_device_error = m_io_group . io_base ( ) . offset ( ATA_REG_ERROR ) . in < u8 > ( ) ;
2020-12-25 16:45:35 +01:00
dbgln ( " IDEChannel: Error {:#02x}! " , ( u8 ) m_device_error ) ;
2021-01-29 19:37:40 +00:00
try_disambiguate_error ( ) ;
2020-11-02 11:16:01 -07:00
complete_current_request ( AsyncDeviceRequest : : Failure ) ;
return ;
}
m_device_error = 0 ;
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
// Now schedule reading/writing the buffer as soon as we leave the irq handler.
// This is important so that we can safely access the buffers, which could
// trigger page faults
2021-03-27 09:53:59 +03:00
g_io_work - > queue ( [ this ] ( ) {
LOCKER ( m_lock ) ;
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
ScopedSpinLock lock ( m_request_lock ) ;
if ( m_current_request - > request_type ( ) = = AsyncBlockDeviceRequest : : Read ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: Read block {}/{} " , m_current_request_block_index , m_current_request - > block_count ( ) ) ;
2021-03-27 09:53:59 +03:00
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
if ( ata_do_read_sector ( ) ) {
if ( + + m_current_request_block_index > = m_current_request - > block_count ( ) ) {
complete_current_request ( AsyncDeviceRequest : : Success ) ;
return ;
2020-11-02 11:16:01 -07:00
}
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
// Wait for the next block
enable_irq ( ) ;
}
} else {
if ( ! m_current_request_flushing_cache ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: Wrote block {}/{} " , m_current_request_block_index , m_current_request - > block_count ( ) ) ;
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
if ( + + m_current_request_block_index > = m_current_request - > block_count ( ) ) {
// We read the last block, flush cache
2021-02-23 20:42:32 +01:00
VERIFY ( ! m_current_request_flushing_cache ) ;
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
m_current_request_flushing_cache = true ;
m_io_group . io_base ( ) . offset ( ATA_REG_COMMAND ) . out < u8 > ( ATA_CMD_CACHE_FLUSH ) ;
2020-11-02 11:16:01 -07:00
} else {
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
// Read next block
ata_do_write_sector ( ) ;
2020-11-02 11:16:01 -07:00
}
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
} else {
complete_current_request ( AsyncDeviceRequest : : Success ) ;
2020-11-02 11:16:01 -07:00
}
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
}
} ) ;
2018-11-10 15:15:31 +01:00
}
2019-09-04 11:10:07 +02:00
static void io_delay ( )
2018-11-10 15:15:31 +01:00
{
2019-07-28 23:44:01 +10:00
for ( int i = 0 ; i < 4 ; + + i )
2019-09-04 11:10:07 +02:00
IO : : in8 ( 0x3f6 ) ;
2019-07-28 23:44:01 +10:00
}
2018-11-10 15:15:31 +01:00
2021-01-29 19:37:40 +00:00
void IDEChannel : : wait_until_not_busy ( )
{
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
while ( m_io_group . control_base ( ) . in < u8 > ( ) & ATA_SR_BSY )
2021-01-29 19:37:40 +00:00
;
}
String IDEChannel : : channel_type_string ( ) const
{
if ( m_channel_type = = ChannelType : : Primary )
return " Primary " ;
return " Secondary " ;
}
2021-02-20 00:00:19 +01:00
UNMAP_AFTER_INIT void IDEChannel : : detect_disks ( )
2019-07-28 23:44:01 +10:00
{
2021-01-29 19:37:40 +00:00
auto channel_string = [ ] ( u8 i ) - > const char * {
if ( i = = 0 )
return " master " ;
return " slave " ;
} ;
2019-07-28 23:44:01 +10:00
// There are only two possible disks connected to a channel
for ( auto i = 0 ; i < 2 ; i + + ) {
2020-12-19 12:50:57 +02:00
m_io_group . io_base ( ) . offset ( ATA_REG_HDDEVSEL ) . out < u8 > ( 0xA0 | ( i < < 4 ) ) ; // First, we need to select the drive itself
2018-11-10 15:15:31 +01:00
2020-12-19 12:50:57 +02:00
m_io_group . io_base ( ) . offset ( ATA_REG_COMMAND ) . out < u8 > ( ATA_CMD_IDENTIFY ) ; // Send the ATA_IDENTIFY command
2018-11-10 15:15:31 +01:00
2019-07-28 23:44:01 +10:00
// Wait for the BSY flag to be reset
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
while ( m_io_group . control_base ( ) . in < u8 > ( ) & ATA_SR_BSY )
2019-07-28 23:44:01 +10:00
;
2018-11-10 15:15:31 +01:00
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
if ( m_io_group . control_base ( ) . in < u8 > ( ) = = 0x00 ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: No {} {} disk detected! " , channel_type_string ( ) . to_lowercase ( ) , channel_string ( i ) ) ;
2019-07-28 23:44:01 +10:00
continue ;
}
2018-11-10 15:15:31 +01:00
2021-01-29 19:37:40 +00:00
bool check_for_atapi = false ;
PATADiskDevice : : InterfaceType interface_type = PATADiskDevice : : InterfaceType : : ATA ;
for ( ; ; ) {
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
u8 status = m_io_group . control_base ( ) . in < u8 > ( ) ;
2021-01-29 19:37:40 +00:00
if ( status & ATA_SR_ERR ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: {} {} device is not ATA. Will check for ATAPI. " , channel_type_string ( ) , channel_string ( i ) ) ;
2021-01-29 19:37:40 +00:00
check_for_atapi = true ;
break ;
}
if ( ! ( status & ATA_SR_BSY ) & & ( status & ATA_SR_DRQ ) ) {
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: {} {} device appears to be ATA. " , channel_type_string ( ) , channel_string ( i ) ) ;
2021-01-29 19:37:40 +00:00
interface_type = PATADiskDevice : : InterfaceType : : ATA ;
break ;
}
}
if ( check_for_atapi ) {
u8 cl = m_io_group . io_base ( ) . offset ( ATA_REG_LBA1 ) . in < u8 > ( ) ;
u8 ch = m_io_group . io_base ( ) . offset ( ATA_REG_LBA2 ) . in < u8 > ( ) ;
if ( ( cl = = 0x14 & & ch = = 0xEB ) | | ( cl = = 0x69 & & ch = = 0x96 ) ) {
interface_type = PATADiskDevice : : InterfaceType : : ATAPI ;
dbgln ( " IDEChannel: {} {} device appears to be ATAPI. We're going to ignore it for now as we don't support it. " , channel_type_string ( ) , channel_string ( i ) ) ;
continue ;
} else {
dbgln ( " IDEChannel: {} {} device doesn't appear to be ATA or ATAPI. Ignoring it. " , channel_type_string ( ) , channel_string ( i ) ) ;
continue ;
}
}
2019-07-28 23:44:01 +10:00
ByteBuffer wbuf = ByteBuffer : : create_uninitialized ( 512 ) ;
ByteBuffer bbuf = ByteBuffer : : create_uninitialized ( 512 ) ;
2019-09-30 08:57:01 +02:00
u8 * b = bbuf . data ( ) ;
u16 * w = ( u16 * ) wbuf . data ( ) ;
2019-07-28 23:44:01 +10:00
for ( u32 i = 0 ; i < 256 ; + + i ) {
2020-12-19 12:50:57 +02:00
u16 data = m_io_group . io_base ( ) . offset ( ATA_REG_DATA ) . in < u16 > ( ) ;
2019-07-28 23:44:01 +10:00
* ( w + + ) = data ;
* ( b + + ) = MSB ( data ) ;
* ( b + + ) = LSB ( data ) ;
}
2019-05-19 03:46:50 +02:00
2019-07-28 23:44:01 +10:00
// "Unpad" the device name string.
for ( u32 i = 93 ; i > 54 & & bbuf [ i ] = = ' ' ; - - i )
bbuf [ i ] = 0 ;
2021-03-26 13:51:31 +03:00
volatile ATAIdentifyBlock & identify_block = ( volatile ATAIdentifyBlock & ) ( * wbuf . data ( ) ) ;
u16 capabilities = identify_block . capabilites [ 0 ] ;
// If the drive is so old that it doesn't support LBA, ignore it.
if ( ! ( capabilities & ATA_CAP_LBA ) )
2020-12-19 12:50:57 +02:00
continue ;
2021-03-26 13:51:31 +03:00
u64 max_addressable_block = identify_block . max_28_bit_addressable_logical_sector ;
2019-07-28 23:44:01 +10:00
2021-03-26 13:51:31 +03:00
// if we support 48-bit LBA, use that value instead.
if ( identify_block . commands_and_feature_sets_supported [ 1 ] & ( 1 < < 10 ) )
max_addressable_block = identify_block . user_addressable_logical_sectors_count ;
dbgln ( " IDEChannel: {} {} {} device found: Name={}, Capacity={}, Capabilities=0x{:04x} " , channel_type_string ( ) , channel_string ( i ) , interface_type = = PATADiskDevice : : InterfaceType : : ATA ? " ATA " : " ATAPI " , ( ( char * ) bbuf . data ( ) + 54 ) , max_addressable_block * 512 , capabilities ) ;
2019-07-28 23:44:01 +10:00
if ( i = = 0 ) {
2021-03-16 20:23:16 +01:00
m_master = PATADiskDevice : : create ( m_parent_controller , * this , PATADiskDevice : : DriveType : : Master , interface_type , capabilities , max_addressable_block ) ;
2019-07-28 23:44:01 +10:00
} else {
2021-03-16 20:23:16 +01:00
m_slave = PATADiskDevice : : create ( m_parent_controller , * this , PATADiskDevice : : DriveType : : Slave , interface_type , capabilities , max_addressable_block ) ;
2019-07-28 23:44:01 +10:00
}
2019-05-19 03:46:50 +02:00
}
}
2021-03-27 09:01:00 +03:00
void IDEChannel : : ata_access ( Direction direction , bool slave_request , u64 lba , u8 block_count , u16 capabilities )
2021-01-29 19:37:40 +00:00
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
VERIFY ( m_request_lock . is_locked ( ) ) ;
2021-01-29 19:37:40 +00:00
LBAMode lba_mode ;
u8 head = 0 ;
2021-03-26 13:51:31 +03:00
VERIFY ( capabilities & ATA_CAP_LBA ) ;
2021-01-29 19:37:40 +00:00
if ( lba > = 0x10000000 ) {
lba_mode = LBAMode : : FortyEightBit ;
head = 0 ;
2021-03-26 13:51:31 +03:00
} else {
2021-01-29 19:37:40 +00:00
lba_mode = LBAMode : : TwentyEightBit ;
head = ( lba & 0xF000000 ) > > 24 ;
}
wait_until_not_busy ( ) ;
2021-03-26 13:51:31 +03:00
m_io_group . io_base ( ) . offset ( ATA_REG_HDDEVSEL ) . out < u8 > ( 0xE0 | ( static_cast < u8 > ( slave_request ) < < 4 ) | head ) ;
2021-01-29 19:37:40 +00:00
if ( lba_mode = = LBAMode : : FortyEightBit ) {
m_io_group . io_base ( ) . offset ( ATA_REG_SECCOUNT1 ) . out < u8 > ( 0 ) ;
m_io_group . io_base ( ) . offset ( ATA_REG_LBA3 ) . out < u8 > ( ( lba & 0xFF000000 ) > > 24 ) ;
2021-03-16 20:31:45 +01:00
m_io_group . io_base ( ) . offset ( ATA_REG_LBA4 ) . out < u8 > ( ( lba & 0xFF00000000ull ) > > 32 ) ;
m_io_group . io_base ( ) . offset ( ATA_REG_LBA5 ) . out < u8 > ( ( lba & 0xFF0000000000ull ) > > 40 ) ;
2021-01-29 19:37:40 +00:00
}
m_io_group . io_base ( ) . offset ( ATA_REG_SECCOUNT0 ) . out < u8 > ( block_count ) ;
2021-03-26 13:51:31 +03:00
m_io_group . io_base ( ) . offset ( ATA_REG_LBA0 ) . out < u8 > ( ( lba & 0x000000FF ) > > 0 ) ;
m_io_group . io_base ( ) . offset ( ATA_REG_LBA1 ) . out < u8 > ( ( lba & 0x0000FF00 ) > > 8 ) ;
m_io_group . io_base ( ) . offset ( ATA_REG_LBA2 ) . out < u8 > ( ( lba & 0x00FF0000 ) > > 16 ) ;
2021-01-29 19:37:40 +00:00
for ( ; ; ) {
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
auto status = m_io_group . control_base ( ) . in < u8 > ( ) ;
2021-01-29 19:37:40 +00:00
if ( ! ( status & ATA_SR_BSY ) & & ( status & ATA_SR_DRDY ) )
break ;
}
2021-03-27 09:01:00 +03:00
send_ata_io_command ( lba_mode , direction ) ;
2021-01-29 19:37:40 +00:00
enable_irq ( ) ;
}
2021-03-27 09:01:00 +03:00
void IDEChannel : : send_ata_io_command ( LBAMode lba_mode , Direction direction ) const
2019-05-19 03:46:50 +02:00
{
2021-03-27 09:01:00 +03:00
if ( lba_mode ! = LBAMode : : FortyEightBit ) {
m_io_group . io_base ( ) . offset ( ATA_REG_COMMAND ) . out < u8 > ( direction = = Direction : : Read ? ATA_CMD_READ_PIO : ATA_CMD_WRITE_PIO ) ;
} else {
m_io_group . io_base ( ) . offset ( ATA_REG_COMMAND ) . out < u8 > ( direction = = Direction : : Read ? ATA_CMD_READ_PIO_EXT : ATA_CMD_WRITE_PIO_EXT ) ;
}
2020-11-02 11:16:01 -07:00
}
2019-05-19 03:46:50 +02:00
2020-12-19 12:50:57 +02:00
bool IDEChannel : : ata_do_read_sector ( )
2020-11-02 11:16:01 -07:00
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
VERIFY ( m_request_lock . is_locked ( ) ) ;
VERIFY ( ! m_current_request . is_null ( ) ) ;
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel::ata_do_read_sector " ) ;
2020-11-02 11:16:01 -07:00
auto & request = * m_current_request ;
auto out_buffer = request . buffer ( ) . offset ( m_current_request_block_index * 512 ) ;
ssize_t nwritten = request . write_to_buffer_buffered < 512 > ( out_buffer , 512 , [ & ] ( u8 * buffer , size_t buffer_bytes ) {
for ( size_t i = 0 ; i < buffer_bytes ; i + = sizeof ( u16 ) )
2020-12-19 12:50:57 +02:00
* ( u16 * ) & buffer [ i ] = IO : : in16 ( m_io_group . io_base ( ) . offset ( ATA_REG_DATA ) . get ( ) ) ;
2020-11-02 11:16:01 -07:00
return ( ssize_t ) buffer_bytes ;
} ) ;
if ( nwritten < 0 ) {
// TODO: Do we need to abort the PATA read if this wasn't the last block?
complete_current_request ( AsyncDeviceRequest : : MemoryFault ) ;
2019-05-19 03:56:06 +02:00
return false ;
2020-11-02 11:16:01 -07:00
}
2019-05-19 03:46:50 +02:00
return true ;
2018-11-10 15:15:31 +01:00
}
2021-01-29 19:37:40 +00:00
// FIXME: This doesn't quite work and locks up reading LBA 3.
void IDEChannel : : ata_read_sectors ( bool slave_request , u16 capabilities )
2018-11-10 15:15:31 +01:00
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
VERIFY ( ! m_current_request . is_null ( ) ) ;
VERIFY ( m_current_request - > block_count ( ) < = 256 ) ;
2019-05-26 14:58:21 +02:00
2021-03-27 09:53:59 +03:00
ScopedSpinLock m_lock ( m_request_lock ) ;
dbgln_if ( PATA_DEBUG , " IDEChannel::ata_read_sectors " ) ;
dbgln_if ( PATA_DEBUG , " IDEChannel: Reading {} sector(s) @ LBA {} " , m_current_request - > block_count ( ) , m_current_request - > block_index ( ) ) ;
ata_access ( Direction : : Read , slave_request , m_current_request - > block_index ( ) , m_current_request - > block_count ( ) , capabilities ) ;
2020-11-02 11:16:01 -07:00
}
2020-04-15 15:46:36 +03:00
2020-12-19 12:50:57 +02:00
void IDEChannel : : ata_do_write_sector ( )
2020-11-02 11:16:01 -07:00
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
VERIFY ( m_request_lock . is_locked ( ) ) ;
VERIFY ( ! m_current_request . is_null ( ) ) ;
2020-11-02 11:16:01 -07:00
auto & request = * m_current_request ;
2020-04-15 15:46:36 +03:00
2020-11-02 11:16:01 -07:00
io_delay ( ) ;
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
while ( ( m_io_group . control_base ( ) . in < u8 > ( ) & ATA_SR_BSY ) | | ! ( m_io_group . control_base ( ) . in < u8 > ( ) & ATA_SR_DRQ ) )
2020-11-02 11:16:01 -07:00
;
2020-11-04 21:25:26 +01:00
Kernel: Restore IDE PIO functionality
This change can be actually seen as two logical changes, the first
change is about to ensure we only read the ATA Status register only
once, because if we read it multiple times, we acknowledge interrupts
unintentionally. To solve this issue, we always use the alternate Status
register and only read the original status register in the IRQ handler.
The second change is how we handle interrupts - if we use DMA, we can
just complete the request and return from the IRQ handler. For PIO mode,
it's more complicated. For PIO write operation, after setting the ATA
registers, we send out the data to IO port, and wait for an interrupt.
For PIO read operation, we set the ATA registers, and wait for an
interrupt to fire, then we just read from the data IO port.
2021-02-01 19:12:08 +02:00
u8 status = m_io_group . control_base ( ) . in < u8 > ( ) ;
2021-02-23 20:42:32 +01:00
VERIFY ( status & ATA_SR_DRQ ) ;
2020-11-04 21:25:26 +01:00
2020-11-02 11:16:01 -07:00
auto in_buffer = request . buffer ( ) . offset ( m_current_request_block_index * 512 ) ;
2021-02-07 15:33:24 +03:30
dbgln_if ( PATA_DEBUG , " IDEChannel: Writing 512 bytes (part {}) (status={:#02x})... " , m_current_request_block_index , status ) ;
2020-11-02 11:16:01 -07:00
ssize_t nread = request . read_from_buffer_buffered < 512 > ( in_buffer , 512 , [ & ] ( const u8 * buffer , size_t buffer_bytes ) {
for ( size_t i = 0 ; i < buffer_bytes ; i + = sizeof ( u16 ) )
2020-12-19 12:50:57 +02:00
IO : : out16 ( m_io_group . io_base ( ) . offset ( ATA_REG_DATA ) . get ( ) , * ( const u16 * ) & buffer [ i ] ) ;
2020-11-02 11:16:01 -07:00
return ( ssize_t ) buffer_bytes ;
} ) ;
if ( nread < 0 )
complete_current_request ( AsyncDeviceRequest : : MemoryFault ) ;
2019-07-28 23:44:01 +10:00
}
2021-01-29 19:37:40 +00:00
// FIXME: I'm assuming this doesn't work based on the fact PIO read doesn't work.
void IDEChannel : : ata_write_sectors ( bool slave_request , u16 capabilities )
2019-07-28 23:44:01 +10:00
{
2021-03-27 09:53:59 +03:00
VERIFY ( m_lock . is_locked ( ) ) ;
VERIFY ( ! m_current_request . is_null ( ) ) ;
VERIFY ( m_current_request - > block_count ( ) < = 256 ) ;
2018-11-18 14:57:41 +01:00
2021-03-27 09:53:59 +03:00
ScopedSpinLock m_lock ( m_request_lock ) ;
dbgln_if ( PATA_DEBUG , " IDEChannel: Writing {} sector(s) @ LBA {} " , m_current_request - > block_count ( ) , m_current_request - > block_index ( ) ) ;
ata_access ( Direction : : Write , slave_request , m_current_request - > block_index ( ) , m_current_request - > block_count ( ) , capabilities ) ;
2020-11-02 11:16:01 -07:00
ata_do_write_sector ( ) ;
2018-11-18 14:57:41 +01:00
}
2020-02-16 01:27:42 +01:00
}