serenity/Kernel/Process.h

999 lines
40 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/IntrusiveListRelaxedConst.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/AtomicEdgeAction.h>
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/InodeMetadata.h>
#include <Kernel/FileSystem/UnveilNode.h>
2020-02-16 01:50:16 +01:00
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
2021-07-18 09:10:27 +02:00
#include <Kernel/Locking/Mutex.h>
#include <Kernel/Locking/MutexProtected.h>
#include <Kernel/Memory/AddressSpace.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessExposed.h>
#include <Kernel/ProcessGroup.h>
2020-06-18 22:18:44 +02:00
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/UnixTypes.h>
#include <LibC/elf.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
MutexProtected<String>& hostname();
Time kgettimeofday();
2020-06-18 22:18:44 +02:00
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
2020-06-18 22:18:44 +02:00
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
2020-06-18 22:18:44 +02:00
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap)
2020-01-11 20:48:43 +01:00
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
};
typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;
struct LoadResult;
class Process final
: public AK::RefCountedBase
, public Weakable<Process> {
class ProtectedValues {
public:
ProcessID pid { 0 };
ProcessID ppid { 0 };
SessionID sid { 0 };
uid_t euid { 0 };
gid_t egid { 0 };
uid_t uid { 0 };
gid_t gid { 0 };
uid_t suid { 0 };
gid_t sgid { 0 };
Vector<gid_t> extra_gids;
bool dumpable { false };
Atomic<bool> has_promises { false };
Atomic<u32> promises { 0 };
Atomic<bool> has_execpromises { false };
Atomic<u32> execpromises { 0 };
mode_t umask { 022 };
VirtualAddress signal_trampoline;
Atomic<u32> thread_count { 0 };
u8 termination_status { 0 };
u8 termination_signal { 0 };
};
public:
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class Thread;
friend class Coredump;
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
friend class ProcFSProcessFileDescriptions;
// Helper class to temporarily unprotect a process's protected data so you can write to it.
class ProtectedDataMutationScope {
public:
explicit ProtectedDataMutationScope(Process& process)
: m_process(process)
{
m_process.unprotect_data();
}
~ProtectedDataMutationScope() { m_process.protect_data(); }
private:
Process& m_process;
};
enum class State : u8 {
Running = 0,
Dying,
Dead
};
public:
class ProcessProcFSTraits;
inline static Process& current()
{
auto current_thread = Processor::current_thread();
VERIFY(current_thread);
return current_thread->process();
}
inline static bool has_current()
{
return Processor::current_thread();
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
enum class RegisterProcess {
No,
Yes
};
template<typename EntryFunction>
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
}
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
static void register_new(Process&);
bool unref() const;
~Process();
static NonnullRefPtrVector<Process> all_processes();
2021-08-05 22:22:26 +02:00
RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, OwnPtr<KString> name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
bool should_generate_coredump() const { return m_should_generate_coredump; }
void set_should_generate_coredump(bool b) { m_should_generate_coredump = b; }
bool is_dying() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) != State::Running; }
bool is_dead() const { return m_state.load(AK::MemoryOrder::memory_order_acquire) == State::Dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static RefPtr<Process> from_pid(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
const String& name() const { return m_name; }
ProcessID pid() const { return m_protected_values.pid; }
SessionID sid() const { return m_protected_values.sid; }
bool is_session_leader() const { return sid().value() == pid().value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == pid().value(); }
const Vector<gid_t>& extra_gids() const { return m_protected_values.extra_gids; }
uid_t euid() const { return m_protected_values.euid; }
gid_t egid() const { return m_protected_values.egid; }
uid_t uid() const { return m_protected_values.uid; }
gid_t gid() const { return m_protected_values.gid; }
uid_t suid() const { return m_protected_values.suid; }
gid_t sgid() const { return m_protected_values.sgid; }
ProcessID ppid() const { return m_protected_values.ppid; }
bool is_dumpable() const { return m_protected_values.dumpable; }
void set_dumpable(bool);
mode_t umask() const { return m_protected_values.umask; }
bool in_group(gid_t) const;
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each(Callback);
template<IteratorFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<IteratorFunction<Process&> Callback>
void for_each_child(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each(Callback);
template<VoidFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<VoidFunction<Process&> Callback>
void for_each_child(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
KResult start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, const RegisterState&);
KResultOr<FlatPtr> sys$emuctl();
KResultOr<FlatPtr> sys$yield();
KResultOr<FlatPtr> sys$sync();
KResultOr<FlatPtr> sys$beep();
KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
KResultOr<FlatPtr> sys$dbgputch(u8);
KResultOr<FlatPtr> sys$dbgputstr(Userspace<const char*>, size_t);
KResultOr<FlatPtr> sys$dump_backtrace();
KResultOr<FlatPtr> sys$gettid();
KResultOr<FlatPtr> sys$setsid();
KResultOr<FlatPtr> sys$getsid(pid_t);
KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
KResultOr<FlatPtr> sys$getpgrp();
KResultOr<FlatPtr> sys$getpgid(pid_t);
KResultOr<FlatPtr> sys$getuid();
KResultOr<FlatPtr> sys$getgid();
KResultOr<FlatPtr> sys$geteuid();
KResultOr<FlatPtr> sys$getegid();
KResultOr<FlatPtr> sys$getpid();
KResultOr<FlatPtr> sys$getppid();
KResultOr<FlatPtr> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
KResultOr<FlatPtr> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
KResultOr<FlatPtr> sys$umask(mode_t);
KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
KResultOr<FlatPtr> sys$close(int fd);
KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
KResultOr<FlatPtr> sys$purge(int mode);
KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
KResultOr<FlatPtr> sys$fchdir(int fd);
KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$fork(RegisterState&);
KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
KResultOr<FlatPtr> sys$seteuid(uid_t);
KResultOr<FlatPtr> sys$setegid(gid_t);
KResultOr<FlatPtr> sys$setuid(uid_t);
KResultOr<FlatPtr> sys$setgid(gid_t);
KResultOr<FlatPtr> sys$setreuid(uid_t, uid_t);
KResultOr<FlatPtr> sys$setresuid(uid_t, uid_t, uid_t);
KResultOr<FlatPtr> sys$setresgid(gid_t, gid_t, gid_t);
KResultOr<FlatPtr> sys$alarm(unsigned seconds);
KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
KResultOr<FlatPtr> sys$times(Userspace<tms*>);
KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
KResultOr<FlatPtr> sys$fchown(int fd, uid_t, gid_t);
KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
KResultOr<FlatPtr> sys$halt();
KResultOr<FlatPtr> sys$reboot();
KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
KResultOr<FlatPtr> sys$profiling_disable(pid_t);
KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
KResultOr<FlatPtr> sys$perf_register_string(Userspace<char const*>, size_t);
KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
KResultOr<FlatPtr> sys$sysconf(int name);
KResultOr<FlatPtr> sys$disown(ProcessID);
KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
KResultOr<FlatPtr> sys$anon_create(size_t, int options);
KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
KResultOr<FlatPtr> sys$map_time_page();
template<bool sockname, typename Params>
int get_sock_or_peer_name(const Params&);
static void initialize();
[[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info();
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
Custody& current_directory();
Custody* executable() { return m_executable.ptr(); }
const Custody* executable() const { return m_executable.ptr(); }
const Vector<String>& arguments() const { return m_arguments; };
const Vector<String>& environment() const { return m_environment; };
KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
bool is_superuser() const { return euid() == 0; }
void terminate_due_to_signal(u8 signal);
KResult send_signal(u8 signal, Process* sender);
u8 termination_signal() const { return m_protected_values.termination_signal; }
u16 thread_count() const
{
return m_protected_values.thread_count.load(AK::MemoryOrder::memory_order_relaxed);
}
Mutex& big_lock() { return m_big_lock; }
Mutex& ptrace_lock() { return m_ptrace_lock; }
bool has_promises() const { return m_protected_values.has_promises; }
bool has_promised(Pledge pledge) const { return m_protected_values.promises & (1u << (u32)pledge); }
2020-01-11 20:48:43 +01:00
VeilState veil_state() const
{
return m_veil_state;
}
const UnveilNode& unveiled_paths() const
{
return m_unveiled_paths;
}
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
KResultOr<u32> peek_user_data(Userspace<const u32*> address);
KResult poke_user_data(Userspace<u32*> address, u32 data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockerSet& wait_blocker_set() { return m_wait_block_condition; }
template<typename Callback>
void for_each_coredump_property(Callback callback) const
{
for (auto& property : m_coredump_properties) {
if (property.key && property.value)
callback(*property.key, *property.value);
}
}
KResult set_coredump_property(NonnullOwnPtr<KString> key, NonnullOwnPtr<KString> value);
KResult try_set_coredump_property(StringView key, StringView value);
const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<Coredump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
Memory::AddressSpace& address_space() { return *m_space; }
Memory::AddressSpace const& address_space() const { return *m_space; }
VirtualAddress signal_trampoline() const { return m_protected_values.signal_trampoline; }
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
KResult attach_resources(NonnullOwnPtr<Memory::AddressSpace>&&, RefPtr<Thread>& first_thread, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
bool dump_core();
bool dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);
KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);
Kernel: Tighten up exec/do_exec and allow for PT_INTERP iterpreters This patch changes how exec() figures out which program image to actually load. Previously, we opened the path to our main executable in find_shebang_interpreter_for_executable, read the first page (or less, if the file was smaller) and then decided whether to recurse with the interpreter instead. We then then re-opened the main executable in do_exec. However, since we now want to parse the ELF header and Program Headers of an elf image before even doing any memory region work, we can change the way this whole process works. We open the file and read (up to) the first page in exec() itself, then pass just the page and the amount read to find_shebang_interpreter_for_executable. Since we now have that page and the FileDescription for the main executable handy, we can do a few things. First, validate the ELF header and ELF program headers for any shenanigans. ELF32 Little Endian i386 only, please. Second, we can grab the PT_INTERP interpreter from any ET_DYN files, and open that guy right away if it exists. Finally, we can pass the main executable's and optionally the PT_INTERP interpreter's file descriptions down to do_exec and not have to feel guilty about opening the file twice. In do_exec, we now have a choice. Are we going to load the main executable, or the interpreter? We could load both, but it'll be way easier for the inital pass on the RTLD if we only load the interpreter. Then it can load the main executable itself like any old shared object, just, the one with main in it :). Later on we can load both of them into memory and the RTLD can relocate itself before trying to do anything. The way it's written now the RTLD will get dibs on its requested virtual addresses being the actual virtual addresses.
2020-01-10 18:28:02 -07:00
2019-11-14 19:16:30 +03:00
KResult do_kill(Process&, int signal);
2020-08-09 01:08:24 +02:00
KResult do_killpg(ProcessGroupID pgrp, int signal);
KResult do_killall(int signal);
KResult do_killself(int signal);
2019-11-14 19:16:30 +03:00
KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const;
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;
bool has_tracee_thread(ProcessID tracer_pid);
void clear_futex_queues_on_exec();
void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
public:
NonnullRefPtr<ProcessProcFSTraits> procfs_traits() const { return *m_procfs_traits; }
KResult procfs_get_fds_stats(KBufferBuilder& builder) const;
KResult procfs_get_perf_events(KBufferBuilder& builder) const;
KResult procfs_get_unveil_stats(KBufferBuilder& builder) const;
KResult procfs_get_pledge_stats(KBufferBuilder& builder) const;
KResult procfs_get_virtual_memory_stats(KBufferBuilder& builder) const;
KResult procfs_get_binary_link(KBufferBuilder& builder) const;
KResult procfs_get_current_work_directory_link(KBufferBuilder& builder) const;
mode_t binary_link_required_mode() const;
KResultOr<size_t> procfs_get_thread_stack(ThreadID thread_id, KBufferBuilder& builder) const;
KResult traverse_stacks_directory(unsigned fsid, Function<bool(FileSystem::DirectoryEntryView const&)> callback) const;
KResultOr<NonnullRefPtr<Inode>> lookup_stacks_directory(const ProcFS&, StringView name) const;
KResultOr<size_t> procfs_get_file_description_link(unsigned fd, KBufferBuilder& builder) const;
KResult traverse_file_descriptions_directory(unsigned fsid, Function<bool(FileSystem::DirectoryEntryView const&)> callback) const;
KResultOr<NonnullRefPtr<Inode>> lookup_file_descriptions_directory(const ProcFS&, StringView name) const;
private:
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
else if (m_profiling)
return m_perf_event_buffer.ptr();
else
return nullptr;
}
mutable IntrusiveListNode<Process> m_list_node;
String m_name;
OwnPtr<Memory::AddressSpace> m_space;
RefPtr<ProcessGroup> m_pg;
AtomicEdgeAction<u32> m_protected_data_refs;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
public:
class FileDescriptionAndFlags {
public:
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
bool is_valid() const { return !m_description.is_null(); }
bool is_allocated() const { return m_is_allocated; }
void allocate()
{
VERIFY(!m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = true;
}
void deallocate()
{
VERIFY(m_is_allocated);
VERIFY(!is_valid());
m_is_allocated = false;
}
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
FileDescription* description() { return m_description; }
const FileDescription* description() const { return m_description; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
2019-04-29 04:55:54 +02:00
void clear();
void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
private:
RefPtr<FileDescription> m_description;
bool m_is_allocated { false };
u32 m_flags { 0 };
};
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
class ScopedDescriptionAllocation;
class FileDescriptions {
AK_MAKE_NONCOPYABLE(FileDescriptions);
friend class Process;
public:
ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }
KResult try_clone(const Kernel::Process::FileDescriptions& other)
{
SpinlockLocker lock_other(other.m_fds_lock);
if (!try_resize(other.m_fds_metadatas.size()))
return ENOMEM;
for (size_t i = 0; i < other.m_fds_metadatas.size(); ++i) {
m_fds_metadatas[i] = other.m_fds_metadatas[i];
}
return KSuccess;
}
const FileDescriptionAndFlags& at(size_t i) const;
FileDescriptionAndFlags& at(size_t i);
FileDescriptionAndFlags const* get_if_valid(size_t i) const;
FileDescriptionAndFlags* get_if_valid(size_t i);
void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
void change_each(Function<void(FileDescriptionAndFlags&)>);
KResultOr<ScopedDescriptionAllocation> allocate(int first_candidate_fd = 0);
size_t open_count() const;
bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
size_t max_open() const
{
return m_max_open_file_descriptors;
}
void clear()
{
SpinlockLocker lock(m_fds_lock);
m_fds_metadatas.clear();
}
// FIXME: Consider to remove this somehow
RefPtr<FileDescription> file_description(int fd) const;
private:
FileDescriptions() = default;
static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
2021-08-22 01:37:17 +02:00
mutable Spinlock<u8> m_fds_lock;
Vector<FileDescriptionAndFlags> m_fds_metadatas;
};
class ScopedDescriptionAllocation {
AK_MAKE_NONCOPYABLE(ScopedDescriptionAllocation);
public:
ScopedDescriptionAllocation() = default;
ScopedDescriptionAllocation(int tracked_fd, FileDescriptionAndFlags* description)
: fd(tracked_fd)
, m_description(description)
{
}
ScopedDescriptionAllocation(ScopedDescriptionAllocation&& other)
: fd(other.fd)
{
// Take over the responsibility of tracking to deallocation.
swap(m_description, other.m_description);
}
~ScopedDescriptionAllocation()
{
if (m_description && m_description->is_allocated() && !m_description->is_valid()) {
m_description->deallocate();
}
}
const int fd { -1 };
private:
FileDescriptionAndFlags* m_description { nullptr };
};
class ProcessProcFSTraits : public ProcFSExposedComponent {
public:
static KResultOr<NonnullRefPtr<ProcessProcFSTraits>> try_create(Badge<Process>, WeakPtr<Process> process)
{
return adopt_nonnull_ref_or_enomem(new (nothrow) ProcessProcFSTraits(process));
}
virtual InodeIndex component_index() const override;
virtual KResultOr<NonnullRefPtr<Inode>> to_inode(const ProcFS& procfs_instance) const override;
virtual KResult traverse_as_directory(unsigned, Function<bool(FileSystem::DirectoryEntryView const&)>) const override;
virtual mode_t required_mode() const override { return 0555; }
virtual uid_t owner_user() const override;
virtual gid_t owner_group() const override;
private:
ProcessProcFSTraits(WeakPtr<Process> process)
: m_process(process)
{
}
// NOTE: We need to weakly hold on to the process, because otherwise
// we would be creating a reference cycle.
WeakPtr<Process> m_process;
};
FileDescriptions& fds() { return m_fds; }
const FileDescriptions& fds() const { return m_fds; }
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
private:
2021-08-22 01:37:17 +02:00
SpinlockProtected<Thread::ListInProcess>& thread_list() { return m_thread_list; }
SpinlockProtected<Thread::ListInProcess> const& thread_list() const { return m_thread_list; }
2021-08-22 01:37:17 +02:00
SpinlockProtected<Thread::ListInProcess> m_thread_list;
FileDescriptions m_fds;
const bool m_is_kernel_process;
Atomic<State> m_state { State::Running };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_generate_coredump { false };
RefPtr<Custody> m_executable;
RefPtr<Custody> m_cwd;
Vector<String> m_arguments;
Vector<String> m_environment;
RefPtr<TTY> m_tty;
WeakPtr<Memory::Region> m_master_tls_region;
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Mutex m_big_lock { "Process" };
Mutex m_ptrace_lock { "ptrace" };
2019-06-07 11:30:07 +02:00
2020-12-01 15:44:52 -07:00
RefPtr<Timer> m_alarm_timer;
VeilState m_veil_state { VeilState::None };
UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
FutexQueues m_futex_queues;
2021-08-22 01:37:17 +02:00
Spinlock<u8> m_futex_lock;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockerSet m_wait_block_condition;
struct CoredumpProperty {
OwnPtr<KString> key;
OwnPtr<KString> value;
};
Array<CoredumpProperty, 4> m_coredump_properties;
NonnullRefPtrVector<Thread> m_threads_for_coredump;
mutable RefPtr<ProcessProcFSTraits> m_procfs_traits;
static_assert(sizeof(ProtectedValues) < (PAGE_SIZE));
alignas(4096) ProtectedValues m_protected_values;
u8 m_protected_values_padding[PAGE_SIZE - sizeof(ProtectedValues)];
public:
using List = IntrusiveListRelaxedConst<Process, RawPtr<Process>, &Process::m_list_node>;
};
// Note: Process object should be 2 pages of 4096 bytes each.
// It's not expected that the Process object will expand further because the first
// page is used for all unprotected values (which should be plenty of space for them).
// The second page is being used exclusively for write-protected values.
static_assert(sizeof(Process) == (PAGE_SIZE * 2));
2021-08-22 01:37:17 +02:00
extern RecursiveSpinlock g_profiling_lock;
MutexProtected<Process::List>& processes();
template<IteratorFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
processes().with_shared([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (callback(process) == IterationDecision::Break)
break;
}
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
ProcessID my_pid = pid();
processes().with_shared([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
if (callback(process) == IterationDecision::Break)
break;
}
}
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
return thread_list().with([&](auto& thread_list) -> IterationDecision {
for (auto& thread : thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
processes().with_shared([&](const auto& list) {
for (auto it = list.begin(); it != list.end();) {
auto& process = *it;
++it;
if (!process.is_dead() && process.pgid() == pgid) {
if (callback(process) == IterationDecision::Break)
break;
}
}
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
return for_each([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
return for_each_child([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
thread_list().with([&](auto& thread_list) {
for (auto& thread : thread_list)
callback(thread);
});
return IterationDecision::Continue;
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
return for_each_in_pgrp(pgid, [&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
inline bool InodeMetadata::may_read(const Process& process) const
{
return may_read(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_write(const Process& process) const
{
return may_write(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_execute(const Process& process) const
{
return may_execute(process.euid(), process.egid(), process.extra_gids());
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
#define REQUIRE_NO_PROMISES \
do { \
if (Process::current().has_promises()) { \
dbgln("Has made a promise"); \
Process::current().crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
#define REQUIRE_PROMISE(promise) \
do { \
if (Process::current().has_promises() \
&& !Process::current().has_promised(Pledge::promise)) { \
dbgln("Has not pledged {}", #promise); \
(void)Process::current().try_set_coredump_property( \
"pledge_violation"sv, #promise); \
Process::current().crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
}
#define VERIFY_PROCESS_BIG_LOCK_ACQUIRED(process) \
VERIFY(process->big_lock().own_lock());
#define VERIFY_NO_PROCESS_BIG_LOCK(process) \
VERIFY(!process->big_lock().own_lock());
inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
{
Userspace<char const*> characters((FlatPtr)string.characters);
return try_copy_kstring_from_user(characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
void format(FormatBuilder& builder, const Kernel::Process& value)
{
return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
}
};