serenity/Kernel/Thread.h

1476 lines
47 KiB
C
Raw Normal View History

/*
2021-08-05 22:22:26 +02:00
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Concepts.h>
#include <AK/EnumBits.h>
#include <AK/Error.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/Optional.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/TemporaryChange.h>
#include <AK/Time.h>
#include <AK/Variant.h>
#include <AK/Vector.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/Arch/x86/SafeMem.h>
Meta: Split debug defines into multiple headers. The following script was used to make these changes: #!/bin/bash set -e tmp=$(mktemp -d) echo "tmp=$tmp" find Kernel \( -name '*.cpp' -o -name '*.h' \) | sort > $tmp/Kernel.files find . \( -path ./Toolchain -prune -o -path ./Build -prune -o -path ./Kernel -prune \) -o \( -name '*.cpp' -o -name '*.h' \) -print | sort > $tmp/EverythingExceptKernel.files cat $tmp/Kernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/Kernel.macros cat $tmp/EverythingExceptKernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/EverythingExceptKernel.macros comm -23 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/Kernel.unique comm -1 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/EverythingExceptKernel.unique cat $tmp/Kernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/Kernel.header cat $tmp/EverythingExceptKernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/EverythingExceptKernel.header for macro in $(cat $tmp/Kernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.new-includes ||: done cat $tmp/Kernel.new-includes | sort > $tmp/Kernel.new-includes.sorted for macro in $(cat $tmp/EverythingExceptKernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.old-includes ||: done cat $tmp/Kernel.old-includes | sort > $tmp/Kernel.old-includes.sorted comm -23 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.new comm -13 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.old comm -12 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.mixed for file in $(cat $tmp/Kernel.includes.new) do sed -i -E 's/#include <AK\/Debug\.h>/#include <Kernel\/Debug\.h>/' $file done for file in $(cat $tmp/Kernel.includes.mixed) do echo "mixed include in $file, requires manual editing." done
2021-01-25 16:07:10 +01:00
#include <Kernel/Debug.h>
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
#include <Kernel/FileSystem/InodeIdentifier.h>
2020-02-16 01:50:16 +01:00
#include <Kernel/Forward.h>
2021-08-05 22:22:26 +02:00
#include <Kernel/KString.h>
#include <Kernel/Library/ListedRefCounted.h>
#include <Kernel/Locking/LockLocation.h>
2021-07-18 09:09:04 +02:00
#include <Kernel/Locking/LockMode.h>
#include <Kernel/Locking/LockRank.h>
2021-08-22 01:37:17 +02:00
#include <Kernel/Locking/SpinlockProtected.h>
#include <Kernel/Memory/VirtualRange.h>
#include <Kernel/Scheduler.h>
#include <Kernel/TimerQueue.h>
#include <Kernel/UnixTypes.h>
#include <LibC/fd_set.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
namespace Memory {
2021-08-22 01:37:17 +02:00
extern RecursiveSpinlock s_mm_lock;
}
enum class DispatchSignalResult {
Deferred = 0,
Yield,
Terminate,
Continue
};
struct SignalActionData {
VirtualAddress handler_or_sigaction;
u32 mask { 0 };
int flags { 0 };
};
struct ThreadSpecificData {
ThreadSpecificData* self;
};
#define THREAD_PRIORITY_MIN 1
#define THREAD_PRIORITY_LOW 10
#define THREAD_PRIORITY_NORMAL 30
#define THREAD_PRIORITY_HIGH 50
#define THREAD_PRIORITY_MAX 99
#define THREAD_AFFINITY_DEFAULT 0xffffffff
struct ThreadRegisters {
#if ARCH(I386)
FlatPtr ss;
FlatPtr gs;
FlatPtr fs;
FlatPtr es;
FlatPtr ds;
FlatPtr edi;
FlatPtr esi;
FlatPtr ebp;
FlatPtr esp;
FlatPtr ebx;
FlatPtr edx;
FlatPtr ecx;
FlatPtr eax;
FlatPtr eip;
FlatPtr esp0;
FlatPtr ss0;
#else
FlatPtr rdi;
FlatPtr rsi;
FlatPtr rbp;
FlatPtr rsp;
FlatPtr rbx;
FlatPtr rdx;
FlatPtr rcx;
FlatPtr rax;
FlatPtr r8;
FlatPtr r9;
FlatPtr r10;
FlatPtr r11;
FlatPtr r12;
FlatPtr r13;
FlatPtr r14;
FlatPtr r15;
FlatPtr rip;
FlatPtr rsp0;
#endif
FlatPtr cs;
#if ARCH(I386)
FlatPtr eflags;
FlatPtr flags() const { return eflags; }
void set_flags(FlatPtr value) { eflags = value; }
void set_sp(FlatPtr value) { esp = value; }
void set_sp0(FlatPtr value) { esp0 = value; }
void set_ip(FlatPtr value) { eip = value; }
#else
FlatPtr rflags;
FlatPtr flags() const { return rflags; }
void set_flags(FlatPtr value) { rflags = value; }
void set_sp(FlatPtr value) { rsp = value; }
void set_sp0(FlatPtr value) { rsp0 = value; }
void set_ip(FlatPtr value) { rip = value; }
#endif
FlatPtr cr3;
FlatPtr ip() const
{
#if ARCH(I386)
return eip;
#else
return rip;
#endif
}
FlatPtr sp() const
{
#if ARCH(I386)
return esp;
#else
return rsp;
#endif
}
};
class Thread
: public ListedRefCounted<Thread, LockType::Spinlock>
, public Weakable<Thread> {
AK_MAKE_NONCOPYABLE(Thread);
AK_MAKE_NONMOVABLE(Thread);
friend class Mutex;
friend class Process;
friend class Scheduler;
friend struct ThreadReadyQueue;
public:
inline static Thread* current()
{
return Processor::current_thread();
}
static ErrorOr<NonnullRefPtr<Thread>> try_create(NonnullRefPtr<Process>);
~Thread();
static RefPtr<Thread> from_tid(ThreadID);
static void finalize_dying_threads();
ThreadID tid() const { return m_tid; }
ProcessID pid() const;
void set_priority(u32 p) { m_priority = p; }
u32 priority() const { return m_priority; }
void detach()
{
SpinlockLocker lock(m_lock);
m_is_joinable = false;
}
[[nodiscard]] bool is_joinable() const
{
SpinlockLocker lock(m_lock);
return m_is_joinable;
}
Process& process() { return m_process; }
const Process& process() const { return m_process; }
2021-08-05 22:22:26 +02:00
// NOTE: This returns a null-terminated string.
StringView name() const
{
2021-08-05 22:22:26 +02:00
// NOTE: Whoever is calling this needs to be holding our lock while reading the name.
VERIFY(m_lock.is_locked_by_current_processor());
return m_name->view();
}
2021-08-05 22:22:26 +02:00
void set_name(NonnullOwnPtr<KString> name)
{
SpinlockLocker lock(m_lock);
m_name = move(name);
}
void finalize();
enum State : u8 {
Invalid = 0,
Runnable,
Running,
Dying,
Dead,
Stopped,
Blocked
};
class [[nodiscard]] BlockResult {
public:
enum Type {
WokeNormally,
NotBlocked,
InterruptedBySignal,
InterruptedByDeath,
InterruptedByTimeout,
};
BlockResult() = delete;
BlockResult(Type type)
: m_type(type)
{
}
bool operator==(Type type) const
{
return m_type == type;
}
bool operator!=(Type type) const
{
return m_type != type;
}
[[nodiscard]] bool was_interrupted() const
{
switch (m_type) {
case InterruptedBySignal:
case InterruptedByDeath:
return true;
default:
return false;
}
}
private:
Type m_type;
};
class BlockTimeout {
public:
BlockTimeout()
: m_infinite(true)
{
}
explicit BlockTimeout(bool is_absolute, const Time* time, const Time* start_time = nullptr, clockid_t clock_id = CLOCK_MONOTONIC_COARSE);
const Time& absolute_time() const { return m_time; }
const Time* start_time() const { return !m_infinite ? &m_start_time : nullptr; }
clockid_t clock_id() const { return m_clock_id; }
bool is_infinite() const { return m_infinite; }
private:
Time m_time {};
Time m_start_time {};
clockid_t m_clock_id { CLOCK_MONOTONIC_COARSE };
bool m_infinite { false };
};
class BlockerSet;
class Blocker {
AK_MAKE_NONMOVABLE(Blocker);
AK_MAKE_NONCOPYABLE(Blocker);
public:
enum class Type {
Unknown = 0,
File,
Futex,
Plan9FS,
Join,
Queue,
Routing,
Sleep,
Signal,
Wait
};
virtual ~Blocker();
virtual StringView state_string() const = 0;
virtual Type blocker_type() const = 0;
virtual const BlockTimeout& override_timeout(const BlockTimeout& timeout) { return timeout; }
virtual bool can_be_interrupted() const { return true; }
virtual bool setup_blocker();
Thread& thread() { return m_thread; }
enum class UnblockImmediatelyReason {
UnblockConditionAlreadyMet,
TimeoutInThePast,
};
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) = 0;
virtual void was_unblocked(bool did_timeout)
{
if (did_timeout) {
SpinlockLocker lock(m_lock);
m_did_timeout = true;
}
}
void set_interrupted_by_death()
{
SpinlockLocker lock(m_lock);
do_set_interrupted_by_death();
}
void set_interrupted_by_signal(u8 signal)
{
SpinlockLocker lock(m_lock);
do_set_interrupted_by_signal(signal);
}
u8 was_interrupted_by_signal() const
{
SpinlockLocker lock(m_lock);
return do_get_interrupted_by_signal();
}
virtual Thread::BlockResult block_result()
{
SpinlockLocker lock(m_lock);
if (m_was_interrupted_by_death)
return Thread::BlockResult::InterruptedByDeath;
if (m_was_interrupted_by_signal != 0)
return Thread::BlockResult::InterruptedBySignal;
if (m_did_timeout)
return Thread::BlockResult::InterruptedByTimeout;
return Thread::BlockResult::WokeNormally;
}
void begin_blocking(Badge<Thread>);
BlockResult end_blocking(Badge<Thread>, bool);
protected:
Blocker()
: m_thread(*Thread::current())
{
}
void do_set_interrupted_by_death()
{
m_was_interrupted_by_death = true;
}
void do_set_interrupted_by_signal(u8 signal)
{
VERIFY(signal != 0);
m_was_interrupted_by_signal = signal;
}
void do_clear_interrupted_by_signal()
{
m_was_interrupted_by_signal = 0;
}
u8 do_get_interrupted_by_signal() const
{
return m_was_interrupted_by_signal;
}
[[nodiscard]] bool was_interrupted() const
{
return m_was_interrupted_by_death || m_was_interrupted_by_signal != 0;
}
void unblock_from_blocker()
{
{
SpinlockLocker lock(m_lock);
if (!m_is_blocking)
return;
m_is_blocking = false;
}
m_thread->unblock_from_blocker(*this);
}
bool add_to_blocker_set(BlockerSet&, void* = nullptr);
void set_blocker_set_raw_locked(BlockerSet* blocker_set) { m_blocker_set = blocker_set; }
2021-08-22 01:37:17 +02:00
mutable RecursiveSpinlock m_lock;
private:
BlockerSet* m_blocker_set { nullptr };
NonnullRefPtr<Thread> m_thread;
u8 m_was_interrupted_by_signal { 0 };
bool m_is_blocking { false };
bool m_was_interrupted_by_death { false };
bool m_did_timeout { false };
};
class BlockerSet {
AK_MAKE_NONCOPYABLE(BlockerSet);
AK_MAKE_NONMOVABLE(BlockerSet);
public:
BlockerSet() = default;
virtual ~BlockerSet()
{
VERIFY(!m_lock.is_locked());
VERIFY(m_blockers.is_empty());
}
bool add_blocker(Blocker& blocker, void* data)
{
SpinlockLocker lock(m_lock);
if (!should_add_blocker(blocker, data))
return false;
m_blockers.append({ &blocker, data });
return true;
}
void remove_blocker(Blocker& blocker)
{
SpinlockLocker lock(m_lock);
// NOTE: it's possible that the blocker is no longer present
m_blockers.remove_all_matching([&](auto& info) {
return info.blocker == &blocker;
});
}
bool is_empty() const
{
SpinlockLocker lock(m_lock);
return is_empty_locked();
}
protected:
template<typename Callback>
bool unblock_all_blockers_whose_conditions_are_met(Callback try_to_unblock_one)
{
SpinlockLocker lock(m_lock);
return unblock_all_blockers_whose_conditions_are_met_locked(try_to_unblock_one);
}
template<typename Callback>
bool unblock_all_blockers_whose_conditions_are_met_locked(Callback try_to_unblock_one)
{
VERIFY(m_lock.is_locked());
bool stop_iterating = false;
bool did_unblock_any = false;
for (size_t i = 0; i < m_blockers.size() && !stop_iterating;) {
auto& info = m_blockers[i];
if (bool did_unblock = try_to_unblock_one(*info.blocker, info.data, stop_iterating)) {
m_blockers.remove(i);
did_unblock_any = true;
continue;
}
i++;
}
return did_unblock_any;
}
bool is_empty_locked() const
{
VERIFY(m_lock.is_locked());
return m_blockers.is_empty();
}
virtual bool should_add_blocker(Blocker&, void*) { return true; }
struct BlockerInfo {
Blocker* blocker;
void* data;
};
Vector<BlockerInfo, 4> do_take_blockers(size_t count)
{
if (m_blockers.size() <= count)
return move(m_blockers);
size_t move_count = (count <= m_blockers.size()) ? count : m_blockers.size();
VERIFY(move_count > 0);
Vector<BlockerInfo, 4> taken_blockers;
taken_blockers.ensure_capacity(move_count);
for (size_t i = 0; i < move_count; i++)
taken_blockers.append(m_blockers.take(i));
m_blockers.remove(0, move_count);
return taken_blockers;
}
void do_append_blockers(Vector<BlockerInfo, 4>&& blockers_to_append)
{
if (blockers_to_append.is_empty())
return;
if (m_blockers.is_empty()) {
m_blockers = move(blockers_to_append);
return;
}
m_blockers.ensure_capacity(m_blockers.size() + blockers_to_append.size());
for (size_t i = 0; i < blockers_to_append.size(); i++)
m_blockers.append(blockers_to_append.take(i));
blockers_to_append.clear();
}
mutable Spinlock m_lock;
private:
Vector<BlockerInfo, 4> m_blockers;
};
friend class JoinBlocker;
class JoinBlocker final : public Blocker {
public:
explicit JoinBlocker(Thread& joinee, ErrorOr<void>& try_join_result, void*& joinee_exit_value);
virtual Type blocker_type() const override { return Type::Join; }
virtual StringView state_string() const override { return "Joining"sv; }
virtual bool can_be_interrupted() const override { return false; }
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual bool setup_blocker() override;
bool unblock(void*, bool);
private:
NonnullRefPtr<Thread> m_joinee;
void*& m_joinee_exit_value;
ErrorOr<void>& m_try_join_result;
bool m_did_unblock { false };
};
class WaitQueueBlocker final : public Blocker {
public:
explicit WaitQueueBlocker(WaitQueue&, StringView block_reason = {});
virtual ~WaitQueueBlocker();
virtual Type blocker_type() const override { return Type::Queue; }
virtual StringView state_string() const override { return m_block_reason.is_null() ? m_block_reason : "Queue"sv; }
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override { }
virtual bool setup_blocker() override;
bool unblock();
protected:
WaitQueue& m_wait_queue;
StringView m_block_reason;
bool m_did_unblock { false };
};
class FutexBlocker final : public Blocker {
public:
explicit FutexBlocker(FutexQueue&, u32);
virtual ~FutexBlocker();
virtual Type blocker_type() const override { return Type::Futex; }
virtual StringView state_string() const override { return "Futex"sv; }
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override { }
virtual bool setup_blocker() override;
u32 bitset() const { return m_bitset; }
void begin_requeue()
{
// We need to hold the lock until we moved it over
m_relock_flags = m_lock.lock();
}
void finish_requeue(FutexQueue&);
bool unblock_bitset(u32 bitset);
bool unblock(bool force = false);
protected:
FutexQueue& m_futex_queue;
u32 m_bitset { 0 };
u32 m_relock_flags { 0 };
bool m_did_unblock { false };
};
class FileBlocker : public Blocker {
public:
enum class BlockFlags : u16 {
None = 0,
Read = 1 << 0,
Write = 1 << 1,
ReadPriority = 1 << 2,
WritePriority = 1 << 3,
Accept = 1 << 4,
Connect = 1 << 5,
SocketFlags = Accept | Connect,
WriteNotOpen = 1 << 6,
WriteError = 1 << 7,
WriteHangUp = 1 << 8,
ReadHangUp = 1 << 9,
Exception = WriteNotOpen | WriteError | WriteHangUp | ReadHangUp,
};
virtual Type blocker_type() const override { return Type::File; }
virtual bool unblock_if_conditions_are_met(bool, void*) = 0;
};
class OpenFileDescriptionBlocker : public FileBlocker {
public:
const OpenFileDescription& blocked_description() const;
virtual bool unblock_if_conditions_are_met(bool, void*) override;
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual bool setup_blocker() override;
protected:
explicit OpenFileDescriptionBlocker(OpenFileDescription&, BlockFlags, BlockFlags&);
private:
NonnullRefPtr<OpenFileDescription> m_blocked_description;
const BlockFlags m_flags;
BlockFlags& m_unblocked_flags;
bool m_did_unblock { false };
};
class AcceptBlocker final : public OpenFileDescriptionBlocker {
public:
explicit AcceptBlocker(OpenFileDescription&, BlockFlags&);
virtual StringView state_string() const override { return "Accepting"sv; }
};
class ConnectBlocker final : public OpenFileDescriptionBlocker {
public:
explicit ConnectBlocker(OpenFileDescription&, BlockFlags&);
virtual StringView state_string() const override { return "Connecting"sv; }
};
class WriteBlocker final : public OpenFileDescriptionBlocker {
public:
explicit WriteBlocker(OpenFileDescription&, BlockFlags&);
virtual StringView state_string() const override { return "Writing"sv; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
private:
BlockTimeout m_timeout;
};
class ReadBlocker final : public OpenFileDescriptionBlocker {
public:
explicit ReadBlocker(OpenFileDescription&, BlockFlags&);
virtual StringView state_string() const override { return "Reading"sv; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
private:
BlockTimeout m_timeout;
};
class SleepBlocker final : public Blocker {
2019-07-18 17:26:11 +02:00
public:
explicit SleepBlocker(const BlockTimeout&, Time* = nullptr);
virtual StringView state_string() const override { return "Sleeping"sv; }
virtual Type blocker_type() const override { return Type::Sleep; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual void was_unblocked(bool) override;
virtual Thread::BlockResult block_result() override;
2019-07-18 17:26:11 +02:00
private:
void calculate_remaining();
BlockTimeout m_deadline;
Time* m_remaining;
2019-07-18 17:26:11 +02:00
};
class SelectBlocker final : public FileBlocker {
2019-07-18 17:39:49 +02:00
public:
struct FDInfo {
NonnullRefPtr<OpenFileDescription> description;
BlockFlags block_flags { BlockFlags::None };
BlockFlags unblocked_flags { BlockFlags::None };
};
using FDVector = Vector<FDInfo, FD_SETSIZE>;
explicit SelectBlocker(FDVector&);
virtual ~SelectBlocker();
virtual bool unblock_if_conditions_are_met(bool, void*) override;
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual void was_unblocked(bool) override;
virtual StringView state_string() const override { return "Selecting"sv; }
virtual bool setup_blocker() override;
2019-07-18 17:39:49 +02:00
private:
size_t collect_unblocked_flags();
FDVector& m_fds;
bool m_did_unblock { false };
2019-07-18 17:39:49 +02:00
};
class SignalBlocker final : public Blocker {
public:
explicit SignalBlocker(sigset_t pending_set, siginfo_t& result);
virtual StringView state_string() const override { return "Pending Signal"sv; }
virtual Type blocker_type() const override { return Type::Signal; }
void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual bool setup_blocker() override;
bool check_pending_signals(bool from_add_blocker);
private:
sigset_t m_pending_set { 0 };
siginfo_t& m_result;
bool m_did_unblock { false };
};
class SignalBlockerSet final : public BlockerSet {
public:
void unblock_all_blockers_whose_conditions_are_met()
{
BlockerSet::unblock_all_blockers_whose_conditions_are_met([&](auto& b, void*, bool&) {
VERIFY(b.blocker_type() == Blocker::Type::Signal);
auto& blocker = static_cast<Thread::SignalBlocker&>(b);
return blocker.check_pending_signals(false);
});
}
private:
bool should_add_blocker(Blocker& b, void*) override
{
VERIFY(b.blocker_type() == Blocker::Type::Signal);
auto& blocker = static_cast<Thread::SignalBlocker&>(b);
return !blocker.check_pending_signals(true);
}
};
class WaitBlocker final : public Blocker {
2019-07-18 18:05:19 +02:00
public:
enum class UnblockFlags {
Terminated,
Stopped,
Continued,
Disowned
};
WaitBlocker(int wait_options, Variant<Empty, NonnullRefPtr<Process>, NonnullRefPtr<ProcessGroup>> waitee, ErrorOr<siginfo_t>& result);
virtual StringView state_string() const override { return "Waiting"sv; }
virtual Type blocker_type() const override { return Type::Wait; }
virtual void will_unblock_immediately_without_blocking(UnblockImmediatelyReason) override;
virtual void was_unblocked(bool) override;
virtual bool setup_blocker() override;
bool unblock(Process& process, UnblockFlags flags, u8 signal, bool from_add_blocker);
bool is_wait() const { return (m_wait_options & WNOWAIT) != WNOWAIT; }
2019-07-18 18:05:19 +02:00
private:
void do_was_disowned();
void do_set_result(const siginfo_t&);
const int m_wait_options;
ErrorOr<siginfo_t>& m_result;
Variant<Empty, NonnullRefPtr<Process>, NonnullRefPtr<ProcessGroup>> m_waitee;
bool m_did_unblock { false };
bool m_got_sigchild { false };
2019-07-18 18:05:19 +02:00
};
class WaitBlockerSet final : public BlockerSet {
friend class WaitBlocker;
public:
explicit WaitBlockerSet(Process& process)
: m_process(process)
{
}
void disowned_by_waiter(Process&);
bool unblock(Process&, WaitBlocker::UnblockFlags, u8);
void try_unblock(WaitBlocker&);
void finalize();
protected:
virtual bool should_add_blocker(Blocker&, void*) override;
private:
struct ProcessBlockInfo {
NonnullRefPtr<Process> process;
WaitBlocker::UnblockFlags flags;
u8 signal;
bool was_waited { false };
explicit ProcessBlockInfo(NonnullRefPtr<Process>&&, WaitBlocker::UnblockFlags, u8);
~ProcessBlockInfo();
};
Process& m_process;
Vector<ProcessBlockInfo, 2> m_processes;
bool m_finalized { false };
};
template<typename AddBlockerHandler>
ErrorOr<void> try_join(AddBlockerHandler add_blocker)
{
if (Thread::current() == this)
return EDEADLK;
SpinlockLocker lock(m_lock);
if (!m_is_joinable || state() == Dead)
return EINVAL;
add_blocker();
// From this point on the thread is no longer joinable by anyone
// else. It also means that if the join is timed, it becomes
// detached when a timeout happens.
m_is_joinable = false;
return {};
}
void did_schedule() { ++m_times_scheduled; }
u32 times_scheduled() const { return m_times_scheduled; }
void resume_from_stopped();
[[nodiscard]] bool should_be_stopped() const;
[[nodiscard]] bool is_stopped() const { return m_state == Stopped; }
[[nodiscard]] bool is_blocked() const { return m_state == Blocked; }
[[nodiscard]] bool is_in_block() const
{
SpinlockLocker lock(m_block_lock);
return m_in_block;
}
u32 cpu() const { return m_cpu.load(AK::MemoryOrder::memory_order_consume); }
void set_cpu(u32 cpu) { m_cpu.store(cpu, AK::MemoryOrder::memory_order_release); }
u32 affinity() const { return m_cpu_affinity; }
void set_affinity(u32 affinity) { m_cpu_affinity = affinity; }
RegisterState& get_register_dump_from_stack();
const RegisterState& get_register_dump_from_stack() const { return const_cast<Thread*>(this)->get_register_dump_from_stack(); }
DebugRegisterState& debug_register_state() { return m_debug_register_state; }
const DebugRegisterState& debug_register_state() const { return m_debug_register_state; }
ThreadRegisters& regs() { return m_regs; }
ThreadRegisters const& regs() const { return m_regs; }
State state() const { return m_state; }
StringView state_string() const;
VirtualAddress thread_specific_data() const { return m_thread_specific_data; }
size_t thread_specific_region_size() const;
size_t thread_specific_region_alignment() const;
ALWAYS_INLINE void yield_if_stopped()
{
// If some thread stopped us, we need to yield to someone else
// We check this when entering/exiting a system call. A thread
// may continue to execute in user land until the next timer
// tick or entering the next system call, or if it's in kernel
// mode then we will intercept prior to returning back to user
// mode.
SpinlockLocker lock(m_lock);
while (state() == Thread::Stopped) {
lock.unlock();
// We shouldn't be holding the big lock here
yield_without_releasing_big_lock();
lock.lock();
}
}
void block(Kernel::Mutex&, SpinlockLocker<Spinlock>&, u32);
template<typename BlockerType, class... Args>
[[nodiscard]] BlockResult block(const BlockTimeout& timeout, Args&&... args)
{
VERIFY(!Processor::current_in_irq());
VERIFY(this == Thread::current());
ScopedCritical critical;
VERIFY(!Memory::s_mm_lock.is_locked_by_current_processor());
SpinlockLocker block_lock(m_block_lock);
// We need to hold m_block_lock so that nobody can unblock a blocker as soon
// as it is constructed and registered elsewhere
VERIFY(!m_in_block);
TemporaryChange in_block_change(m_in_block, true);
BlockerType blocker(forward<Args>(args)...);
if (!blocker.setup_blocker()) {
blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::UnblockConditionAlreadyMet);
return BlockResult::NotBlocked;
}
SpinlockLocker scheduler_lock(g_scheduler_lock);
// Relaxed semantics are fine for timeout_unblocked because we
// synchronize on the spin locks already.
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> timeout_unblocked(false);
bool timer_was_added = false;
switch (state()) {
case Thread::Stopped:
// It's possible that we were requested to be stopped!
break;
case Thread::Running:
VERIFY(m_blocker == nullptr);
break;
default:
VERIFY_NOT_REACHED();
}
m_blocker = &blocker;
if (auto& block_timeout = blocker.override_timeout(timeout); !block_timeout.is_infinite()) {
// Process::kill_all_threads may be called at any time, which will mark all
// threads to die. In that case
timer_was_added = TimerQueue::the().add_timer_without_id(*m_block_timer, block_timeout.clock_id(), block_timeout.absolute_time(), [&]() {
VERIFY(!Processor::current_in_irq());
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
VERIFY(!m_block_lock.is_locked_by_current_processor());
// NOTE: this may execute on the same or any other processor!
SpinlockLocker scheduler_lock(g_scheduler_lock);
SpinlockLocker block_lock(m_block_lock);
if (m_blocker && !timeout_unblocked.exchange(true))
unblock();
});
if (!timer_was_added) {
// Timeout is already in the past
blocker.will_unblock_immediately_without_blocking(Blocker::UnblockImmediatelyReason::TimeoutInThePast);
m_blocker = nullptr;
return BlockResult::InterruptedByTimeout;
}
}
blocker.begin_blocking({});
set_state(Thread::Blocked);
scheduler_lock.unlock();
block_lock.unlock();
dbgln_if(THREAD_DEBUG, "Thread {} blocking on {} ({}) -->", *this, &blocker, blocker.state_string());
bool did_timeout = false;
u32 lock_count_to_restore = 0;
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
for (;;) {
// Yield to the scheduler, and wait for us to resume unblocked.
VERIFY(!g_scheduler_lock.is_locked_by_current_processor());
VERIFY(Processor::in_critical());
yield_without_releasing_big_lock();
VERIFY(Processor::in_critical());
SpinlockLocker block_lock2(m_block_lock);
if (m_blocker && !m_blocker->can_be_interrupted() && !m_should_die) {
block_lock2.unlock();
dbgln("Thread should not be unblocking, current state: {}", state_string());
set_state(Thread::Blocked);
continue;
}
// Prevent the timeout from unblocking this thread if it happens to
// be in the process of firing already
did_timeout |= timeout_unblocked.exchange(true);
if (m_blocker) {
// Remove ourselves...
VERIFY(m_blocker == &blocker);
m_blocker = nullptr;
}
dbgln_if(THREAD_DEBUG, "<-- Thread {} unblocked from {} ({})", *this, &blocker, blocker.state_string());
break;
}
if (blocker.was_interrupted_by_signal()) {
SpinlockLocker scheduler_lock(g_scheduler_lock);
SpinlockLocker lock(m_lock);
dispatch_one_pending_signal();
}
// Notify the blocker that we are no longer blocking. It may need
// to clean up now while we're still holding m_lock
auto result = blocker.end_blocking({}, did_timeout); // calls was_unblocked internally
if (timer_was_added && !did_timeout) {
// Cancel the timer while not holding any locks. This allows
// the timer function to complete before we remove it
// (e.g. if it's on another processor)
TimerQueue::the().cancel_timer(*m_block_timer);
}
if (previous_locked != LockMode::Unlocked) {
// NOTE: this may trigger another call to Thread::block(), so
// we need to do this after we're all done and restored m_in_block!
relock_process(previous_locked, lock_count_to_restore);
}
return result;
}
u32 unblock_from_lock(Kernel::Mutex&);
void unblock_from_blocker(Blocker&);
void unblock(u8 signal = 0);
template<class... Args>
Thread::BlockResult wait_on(WaitQueue& wait_queue, const Thread::BlockTimeout& timeout, Args&&... args)
{
VERIFY(this == Thread::current());
return block<Thread::WaitQueueBlocker>(timeout, wait_queue, forward<Args>(args)...);
}
BlockResult sleep(clockid_t, const Time&, Time* = nullptr);
BlockResult sleep(const Time& duration, Time* remaining_time = nullptr)
{
return sleep(CLOCK_MONOTONIC_COARSE, duration, remaining_time);
}
BlockResult sleep_until(clockid_t, const Time&);
BlockResult sleep_until(const Time& duration)
{
return sleep_until(CLOCK_MONOTONIC_COARSE, duration);
}
// Tell this thread to unblock if needed,
// gracefully unwind the stack and die.
void set_should_die();
[[nodiscard]] bool should_die() const { return m_should_die; }
void die_if_needed();
void exit(void* = nullptr);
void update_time_scheduled(u64, bool, bool);
bool tick();
void set_ticks_left(u32 t) { m_ticks_left = t; }
u32 ticks_left() const { return m_ticks_left; }
FlatPtr kernel_stack_base() const { return m_kernel_stack_base; }
FlatPtr kernel_stack_top() const { return m_kernel_stack_top; }
void set_state(State, u8 = 0);
[[nodiscard]] bool is_initialized() const { return m_initialized; }
void set_initialized(bool initialized) { m_initialized = initialized; }
void send_urgent_signal_to_self(u8 signal);
void send_signal(u8 signal, Process* sender);
u32 update_signal_mask(u32 signal_mask);
u32 signal_mask_block(sigset_t signal_set, bool block);
u32 signal_mask() const;
void reset_signals_for_exec();
ErrorOr<FlatPtr> peek_debug_register(u32 register_index);
ErrorOr<void> poke_debug_register(u32 register_index, FlatPtr data);
void set_dump_backtrace_on_finalization() { m_dump_backtrace_on_finalization = true; }
DispatchSignalResult dispatch_one_pending_signal();
DispatchSignalResult try_dispatch_one_pending_signal(u8 signal);
DispatchSignalResult dispatch_signal(u8 signal);
void check_dispatch_pending_signal();
[[nodiscard]] bool has_unmasked_pending_signals() const { return m_have_any_unmasked_pending_signals.load(AK::memory_order_consume); }
[[nodiscard]] bool should_ignore_signal(u8 signal) const;
[[nodiscard]] bool has_signal_handler(u8 signal) const;
[[nodiscard]] bool is_signal_masked(u8 signal) const;
u32 pending_signals() const;
u32 pending_signals_for_state() const;
[[nodiscard]] bool has_alternative_signal_stack() const;
[[nodiscard]] bool is_in_alternative_signal_stack() const;
FPUState& fpu_state() { return m_fpu_state; }
ErrorOr<void> make_thread_specific_region(Badge<Process>);
unsigned syscall_count() const { return m_syscall_count; }
void did_syscall() { ++m_syscall_count; }
unsigned inode_faults() const { return m_inode_faults; }
void did_inode_fault() { ++m_inode_faults; }
unsigned zero_faults() const { return m_zero_faults; }
void did_zero_fault() { ++m_zero_faults; }
unsigned cow_faults() const { return m_cow_faults; }
void did_cow_fault() { ++m_cow_faults; }
unsigned file_read_bytes() const { return m_file_read_bytes; }
unsigned file_write_bytes() const { return m_file_write_bytes; }
void did_file_read(unsigned bytes)
{
m_file_read_bytes += bytes;
}
void did_file_write(unsigned bytes)
{
m_file_write_bytes += bytes;
}
unsigned unix_socket_read_bytes() const { return m_unix_socket_read_bytes; }
unsigned unix_socket_write_bytes() const { return m_unix_socket_write_bytes; }
void did_unix_socket_read(unsigned bytes)
{
m_unix_socket_read_bytes += bytes;
}
void did_unix_socket_write(unsigned bytes)
{
m_unix_socket_write_bytes += bytes;
}
unsigned ipv4_socket_read_bytes() const { return m_ipv4_socket_read_bytes; }
unsigned ipv4_socket_write_bytes() const { return m_ipv4_socket_write_bytes; }
void did_ipv4_socket_read(unsigned bytes)
{
m_ipv4_socket_read_bytes += bytes;
}
void did_ipv4_socket_write(unsigned bytes)
{
m_ipv4_socket_write_bytes += bytes;
}
void set_active(bool active) { m_is_active = active; }
u32 saved_critical() const { return m_saved_critical; }
void save_critical(u32 critical) { m_saved_critical = critical; }
void track_lock_acquire(LockRank rank);
void track_lock_release(LockRank rank);
[[nodiscard]] bool is_active() const { return m_is_active; }
[[nodiscard]] bool is_finalizable() const
{
// We can't finalize as long as this thread is still running
// Note that checking for Running state here isn't sufficient
// as the thread may not be in Running state but switching out.
// m_is_active is set to false once the context switch is
// complete and the thread is not executing on any processor.
if (m_is_active.load(AK::memory_order_acquire))
return false;
// We can't finalize until the thread is either detached or
// a join has started. We can't make m_is_joinable atomic
// because that would introduce a race in try_join.
SpinlockLocker lock(m_lock);
return !m_is_joinable;
}
ErrorOr<NonnullRefPtr<Thread>> try_clone(Process&);
template<IteratorFunction<Thread&> Callback>
static IterationDecision for_each_in_state(State, Callback);
template<IteratorFunction<Thread&> Callback>
static IterationDecision for_each(Callback);
template<VoidFunction<Thread&> Callback>
static IterationDecision for_each_in_state(State, Callback);
template<VoidFunction<Thread&> Callback>
static IterationDecision for_each(Callback);
static constexpr u32 default_kernel_stack_size = 65536;
static constexpr u32 default_userspace_stack_size = 1 * MiB;
u64 time_in_user() const { return m_total_time_scheduled_user; }
u64 time_in_kernel() const { return m_total_time_scheduled_kernel; }
enum class PreviousMode : u8 {
KernelMode = 0,
UserMode
};
PreviousMode previous_mode() const { return m_previous_mode; }
bool set_previous_mode(PreviousMode mode)
{
if (m_previous_mode == mode)
return false;
m_previous_mode = mode;
return true;
}
TrapFrame*& current_trap() { return m_current_trap; }
TrapFrame const* const& current_trap() const { return m_current_trap; }
2021-08-22 01:37:17 +02:00
RecursiveSpinlock& get_lock() const { return m_lock; }
#if LOCK_DEBUG
void holding_lock(Mutex& lock, int refs_delta, LockLocation const& location)
{
VERIFY(refs_delta != 0);
m_holding_locks.fetch_add(refs_delta, AK::MemoryOrder::memory_order_relaxed);
SpinlockLocker list_lock(m_holding_locks_lock);
if (refs_delta > 0) {
bool have_existing = false;
for (size_t i = 0; i < m_holding_locks_list.size(); i++) {
auto& info = m_holding_locks_list[i];
if (info.lock == &lock) {
have_existing = true;
info.count += refs_delta;
break;
}
}
if (!have_existing)
m_holding_locks_list.append({ &lock, location, 1 });
} else {
VERIFY(refs_delta < 0);
bool found = false;
for (size_t i = 0; i < m_holding_locks_list.size(); i++) {
auto& info = m_holding_locks_list[i];
if (info.lock == &lock) {
VERIFY(info.count >= (unsigned)-refs_delta);
info.count -= (unsigned)-refs_delta;
if (info.count == 0)
m_holding_locks_list.remove(i);
found = true;
break;
}
}
VERIFY(found);
}
}
u32 lock_count() const
{
return m_holding_locks.load(AK::MemoryOrder::memory_order_relaxed);
}
#endif
bool is_handling_page_fault() const
{
return m_handling_page_fault;
}
void set_handling_page_fault(bool b) { m_handling_page_fault = b; }
void set_idle_thread() { m_is_idle_thread = true; }
bool is_idle_thread() const { return m_is_idle_thread; }
void set_crashing() { m_is_crashing = true; }
[[nodiscard]] bool is_crashing() const { return m_is_crashing; }
ALWAYS_INLINE u32 enter_profiler()
{
return m_nested_profiler_calls.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel);
}
ALWAYS_INLINE u32 leave_profiler()
{
return m_nested_profiler_calls.fetch_sub(1, AK::MemoryOrder::memory_order_acquire);
}
bool is_profiling_suppressed() const { return m_is_profiling_suppressed; }
void set_profiling_suppressed() { m_is_profiling_suppressed = true; }
String backtrace();
private:
Thread(NonnullRefPtr<Process>, NonnullOwnPtr<Memory::Region>, NonnullRefPtr<Timer>, NonnullOwnPtr<KString>);
IntrusiveListNode<Thread> m_process_thread_list_node;
int m_runnable_priority { -1 };
friend class WaitQueue;
class JoinBlockerSet final : public BlockerSet {
public:
void thread_did_exit(void* exit_value)
{
SpinlockLocker lock(m_lock);
VERIFY(!m_thread_did_exit);
m_thread_did_exit = true;
m_exit_value.store(exit_value, AK::MemoryOrder::memory_order_release);
do_unblock_joiner();
}
void thread_finalizing()
{
SpinlockLocker lock(m_lock);
do_unblock_joiner();
}
void* exit_value() const
{
VERIFY(m_thread_did_exit);
return m_exit_value.load(AK::MemoryOrder::memory_order_acquire);
}
void try_unblock(JoinBlocker& blocker)
{
SpinlockLocker lock(m_lock);
if (m_thread_did_exit)
blocker.unblock(exit_value(), false);
}
protected:
virtual bool should_add_blocker(Blocker& b, void*) override
{
VERIFY(b.blocker_type() == Blocker::Type::Join);
auto& blocker = static_cast<JoinBlocker&>(b);
// NOTE: m_lock is held already!
if (m_thread_did_exit) {
blocker.unblock(exit_value(), true);
return false;
}
return true;
}
private:
void do_unblock_joiner()
{
unblock_all_blockers_whose_conditions_are_met_locked([&](Blocker& b, void*, bool&) {
VERIFY(b.blocker_type() == Blocker::Type::Join);
auto& blocker = static_cast<JoinBlocker&>(b);
return blocker.unblock(exit_value(), false);
});
}
Atomic<void*> m_exit_value { nullptr };
bool m_thread_did_exit { false };
};
LockMode unlock_process_if_locked(u32&);
void relock_process(LockMode, u32);
2020-02-18 13:44:27 +01:00
void reset_fpu_state();
mutable RecursiveSpinlock m_lock { LockRank::Thread };
2021-08-22 01:37:17 +02:00
mutable RecursiveSpinlock m_block_lock;
NonnullRefPtr<Process> m_process;
ThreadID m_tid { -1 };
ThreadRegisters m_regs {};
DebugRegisterState m_debug_register_state {};
TrapFrame* m_current_trap { nullptr };
u32 m_saved_critical { 1 };
IntrusiveListNode<Thread> m_ready_queue_node;
Atomic<u32> m_cpu { 0 };
u32 m_cpu_affinity { THREAD_AFFINITY_DEFAULT };
Optional<u64> m_last_time_scheduled;
u64 m_total_time_scheduled_user { 0 };
u64 m_total_time_scheduled_kernel { 0 };
u32 m_ticks_left { 0 };
u32 m_times_scheduled { 0 };
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_pending_signals { 0 };
u32 m_signal_mask { 0 };
FlatPtr m_alternative_signal_stack { 0 };
FlatPtr m_alternative_signal_stack_size { 0 };
SignalBlockerSet m_signal_blocker_set;
FlatPtr m_kernel_stack_base { 0 };
FlatPtr m_kernel_stack_top { 0 };
OwnPtr<Memory::Region> m_kernel_stack_region;
VirtualAddress m_thread_specific_data;
Optional<Memory::VirtualRange> m_thread_specific_range;
Array<SignalActionData, NSIG> m_signal_action_data;
Blocker* m_blocker { nullptr };
Kernel::Mutex* m_blocking_lock { nullptr };
u32 m_lock_requested_count { 0 };
IntrusiveListNode<Thread> m_blocked_threads_list_node;
LockRank m_lock_rank_mask { LockRank::None };
#if LOCK_DEBUG
struct HoldingLockInfo {
Mutex* lock;
LockLocation lock_location;
unsigned count;
};
Atomic<u32> m_holding_locks { 0 };
Spinlock m_holding_locks_lock;
Vector<HoldingLockInfo> m_holding_locks_list;
#endif
JoinBlockerSet m_join_blocker_set;
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_active { false };
bool m_is_joinable { true };
bool m_handling_page_fault { false };
PreviousMode m_previous_mode { PreviousMode::KernelMode }; // We always start out in kernel mode
unsigned m_syscall_count { 0 };
unsigned m_inode_faults { 0 };
unsigned m_zero_faults { 0 };
unsigned m_cow_faults { 0 };
unsigned m_file_read_bytes { 0 };
unsigned m_file_write_bytes { 0 };
unsigned m_unix_socket_read_bytes { 0 };
unsigned m_unix_socket_write_bytes { 0 };
unsigned m_ipv4_socket_read_bytes { 0 };
unsigned m_ipv4_socket_write_bytes { 0 };
FPUState m_fpu_state {};
State m_state { Invalid };
NonnullOwnPtr<KString> m_name;
u32 m_priority { THREAD_PRIORITY_NORMAL };
State m_stop_state { Invalid };
bool m_dump_backtrace_on_finalization { false };
bool m_should_die { false };
bool m_initialized { false };
bool m_in_block { false };
bool m_is_idle_thread { false };
bool m_is_crashing { false };
Atomic<bool> m_have_any_unmasked_pending_signals { false };
Atomic<u32> m_nested_profiler_calls { 0 };
NonnullRefPtr<Timer> m_block_timer;
bool m_is_profiling_suppressed { false };
void yield_and_release_relock_big_lock();
enum class VerifyLockNotHeld {
Yes,
No
};
void yield_without_releasing_big_lock(VerifyLockNotHeld verify_lock_not_held = VerifyLockNotHeld::Yes);
void drop_thread_count(bool);
mutable IntrusiveListNode<Thread> m_global_thread_list_node;
public:
using ListInProcess = IntrusiveList<&Thread::m_process_thread_list_node>;
using GlobalList = IntrusiveList<&Thread::m_global_thread_list_node>;
2021-08-22 01:37:17 +02:00
static SpinlockProtected<GlobalList>& all_instances();
};
AK_ENUM_BITWISE_OPERATORS(Thread::FileBlocker::BlockFlags);
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Thread::for_each(Callback callback)
{
return Thread::all_instances().with([&](auto& list) -> IterationDecision {
for (auto& thread : list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Thread::for_each_in_state(State state, Callback callback)
{
return Thread::all_instances().with([&](auto& list) -> IterationDecision {
for (auto& thread : list) {
if (thread.state() != state)
continue;
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Thread::for_each(Callback callback)
{
return Thread::all_instances().with([&](auto& list) {
for (auto& thread : list) {
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Thread::for_each_in_state(State state, Callback callback)
{
return for_each_in_state(state, [&](auto& thread) {
callback(thread);
return IterationDecision::Continue;
});
}
}
template<>
struct AK::Formatter<Kernel::Thread> : AK::Formatter<FormatString> {
ErrorOr<void> format(FormatBuilder&, Kernel::Thread const&);
};