By enabling LTO for the kernel_heap object too, we open the door for
optimization opportunities that come from (partially) inlining `::new`
or kmalloc. Every software spends a non-trivial amount of its run time
on allocating memory, so hopefully this change will make LTO builds even
faster.
This commit updates the Clang toolchain's version to 13.0.0, which comes
with better C++20 support and improved handling of new features by
clang-format. Due to the newly enabled `-Bsymbolic-functions` flag, our
Clang binaries will only be 2-4% slower than if we dynamically linked
them, but we save hundreds of megabytes of disk space.
The `BuildClang.sh` script has been reworked to build the entire
toolchain in just three steps: one for the compiler, one for GNU
binutils, and one for the runtime libraries. This reduces the complexity
of the build script, and will allow us to modify the CI configuration to
only rebuild the libraries when our libc headers change.
Most of the compile flags have been moved out to a separate CMake cache
file, similarly to how the Android and Fuchsia toolchains are
implemented within the LLVM repo. This provides a nicer interface than
the heaps of command-line arguments.
We no longer build separate toolchains for each architecture, as the
same Clang binary can compile code for multiple targets.
The horrible mess that `SERENITY_CLANG_ARCH` was, has been removed in
this commit. Clang happily accepts an `i686-pc-serenity` target triple,
which matches what our GCC toolchain accepts.
LLD fails to define the _GLOBAL_OFFSET_TABLE_ symbol if all inputs to it
are LLVM bitcode files (i.e. those used for LTO). To allow the kernel to
be built with ThinLTO, the workaround suggested in the original LLVM bug
report (<https://bugs.llvm.org/show_bug.cgi?id=39634>) is added in this
commit.
ProcFSGlobalInode now calls `write_bytes()`, `truncate()` and
`set_mtime()` on its associated component. This allows us to write 0 or
1 to a ProcFSSystemBoolean component to toggle a boolean value.
Spinlocks are tied to the platform they are built for, this is why they
have been moved into the Arch folder. They are still available via
"Locking/Spinlock.h"
An Aarch64 stub has been created
A new RegisterState header includes the platform specific RegisterState
header based on the platform being compiled.
The Aarch64 RegisterState header contains stubs for Debug
When booting on RPI3 firmware puts CPU in EL2 mode which is
different from QEMU's default EL3.
I've added logic to discover initial mode at boot
and then act accordingly. This results in Serenity corectly
switching to EL1 on target hardware now.
The platform independent Processor.h file includes the shared processor
code and includes the specific platform header file.
All references to the Arch/x86/Processor.h file have been replaced with
a reference to Arch/Processor.h.
The OpenFileDescription class already offers the necessary functionlity,
so implementing this was only a matter of following the structure for
`read` while handling the additional `offset` argument.
Having these bits of code factored out not only prevents duplication
now, but will also allow us to implement pread without repeating
ourselves (too much).
Values in `ioctl` are given through a pointer, but ioctl's FIONBIO
implementation was interpreting this pointer as an integer directly.
This meant that programs using `ioctl` to set a file descriptor in
blocking mode met with incorrect behavior: they passed a non-null
pointer pointing to a value of 0, but the kernel interpreted the pointer
as a non-zero integer, thus making the file non-blocking.
This commit fixes this behavior by reading the value from the userspace
pointer and using that to set the non-blocking flag on the file
descriptor.
This bug was found while trying to run the openssl tool on serenity,
which used `ioctl` to ensure newly-created sockets are in blocking mode.
Normally, trying to truncate a SysFSInode should result in EPERM error.
However, as suggested by Ali (@alimpfard), we can allow the PowerState
node to be "truncated" so one can open that file with O_TRUNC option.
Likewise, we also need to provide a way to set modified time on SysFS
inodes. For most inodes, we should return ENOTIMPL error, but for the
power state switch, we ignore the modified time setting and just return
KSuccess.
These fixes allow to do "echo -n 1 > /sys/firmware/power_state" in Shell
after gaining root permissions, to switch the power state.
There's basically no real difference in software between a SATA harddisk
and IDE harddisk. The difference in the implementation is for the host
bus adapter protocol and registers layout.
Therefore, there's no point in putting a distinction in software to
these devices.
This change also greatly simplifies and removes stale APIs and removes
unnecessary parameters in constructor calls, which tighten things
further everywhere.
While I was working on LibWeb, I got a page fault at 0xe0e0e0e4.
This indicates a destroyed RefPtr if compiled with SANITIZE_PTRS
defined. However, the page fault handler didn't print out this
indication.
This makes the page fault handler print out a note if the faulting
address looks like a recently destroyed RefPtr, OwnPtr, NonnullRefPtr,
NonnullOwnPtr, ThreadSafeRefPtr or ThreadSafeNonnullRefPtr. It will
only do this if SANITIZE_PTRS is defined, as smart pointers don't get
scrubbed without it being defined.
This exposes a small subset of the information exposed by the Linux
equivalent, and will be used to optimize applications that would like
to know the current CPU usage statistics, but don't want to read all of
the unrelated information in /proc/all
Some time ago, automatic locking was added to the AK smart pointers to
paper over various race conditions in the kernel. Until we've actually
solved the issues in the kernel, we're stuck with the locking.
However, we don't need to punish single-threaded userspace programs with
the high cost of locking. This patch moves the thread-safe variants of
RefPtr, NonnullRefPtr, WeakPtr and RefCounted into Kernel/Library/.