Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
Instead of blindly forcing BGR format on the bochs-display device, let's
ensure we do that only on QEMU bochs-display and not on VirtualBox
graphics adapter too.
This singleton simplifies many aspects that we struggled with before:
1. There's no need to make derived classes of Device expose the
constructor as public anymore. The singleton is a friend of them, so he
can call the constructor. This solves the issue with try_create_device
helper neatly, hopefully for good.
2. Getting a reference of the NullDevice is now being done from this
singleton, which means that NullDevice no longer needs to use its own
singleton, and we can apply the try_create_device helper on it too :)
3. We can now defer registration completely after the Device constructor
which means the Device constructor is merely assigning the major and
minor numbers of the Device, and the try_create_device helper ensures it
calls the after_inserting method immediately after construction. This
creates a great opportunity to make registration more OOM-safe.
Instead of doing so in the constructor, let's do immediately after the
constructor, so we can safely pass a reference of a Device, so the
SysFSDeviceComponent constructor can use that object to identify whether
it's a block device or a character device.
This allows to us to not hold a device in SysFSDeviceComponent with a
RefPtr.
Also, we also call the before_removing method in both SlavePTY::unref
and File::unref, so because Device has that method being overrided, it
can ensure the device is removed always cleanly.
These methods are no longer needed because SystemServer is able to
populate the DevFS on its own.
Device absolute_path no longer assume a path to the /dev location,
because it really should not assume any path to a Device node.
Because StorageManagement still needs to know the storage name, we
declare a virtual method only for StorageDevices to override, but this
technique should really be removed later on.
A couple of things were changed:
1. Semantic changes - PCI segments are now called PCI domains, to better
match what they are really. It's also the name that Linux gave, and it
seems that Wikipedia also uses this name.
We also remove PCI::ChangeableAddress, because it was used in the past
but now it's no longer being used.
2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as
they made a bunch of unnecessary complexity. Instead, Windowed access is
removed entirely (this was tested, but never was benchmarked), so we are
left with IO access and memory access options. The memory access option
is essentially mapping the PCI bus (from the chosen PCI domain), to
virtual memory as-is. This means that unless needed, at any time, there
is only one PCI bus being mapped, and this is changed if access to
another PCI bus in the same PCI domain is needed. For now, we don't
support mapping of different PCI buses from different PCI domains at the
same time, because basically it's still a non-issue for most machines
out there.
2. OOM-safety is increased, especially when constructing the Access
object. It means that we pre-allocating any needed resources, and we try
to find PCI domains (if requested to initialize memory access) after we
attempt to construct the Access object, so it's possible to fail at this
point "gracefully".
3. All PCI API functions are now separated into a different header file,
which means only "clients" of the PCI subsystem API will need to include
that header file.
4. Functional changes - we only allow now to enumerate the bus after
a hardware scan. This means that the old method "enumerate_hardware"
is removed, so, when initializing an Access object, the initializing
function must call rescan on it to force it to find devices. This makes
it possible to fail rescan, and also to defer it after construction from
both OOM-safety terms and hotplug capabilities.
This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
The default template argument is only used in one place, and it
looks like it was probably just an oversight. The rest of the Kernel
code all uses u8 as the type. So lets make that the default and remove
the unused template argument, as there doesn't seem to be a reason to
allow the size to be customizable.
This ensures we safely handle interrupts (which can call virtual
functions), so they don't happen in the constructor - this pattern can
lead to a crash, if we are still in the constructor context because
not all methods are available for usage (some are pure virtual,
so it's possible to call __cxa_pure_virtual).
Also, under some conditions like adding a PCI device via PCI-passthrough
mechanism in QEMU, it became exposed to the eye that the code asserts on
RNG::handle_device_config_change(). That device has no configuration but
if the hypervisor still misbehaves and tries to configure it, we should
simply return false to indicate nothing happened.
Our existing implementation did not check the element type of the other
pointer in the constructors and move assignment operators. This meant
that some operations that would require explicit casting on raw pointers
were done implicitly, such as:
- downcasting a base class to a derived class (e.g. `Kernel::Inode` =>
`Kernel::ProcFSDirectoryInode` in Kernel/ProcFS.cpp),
- casting to an unrelated type (e.g. `Promise<bool>` => `Promise<Empty>`
in LibIMAP/Client.cpp)
This, of course, allows gross violations of the type system, and makes
the need to type-check less obvious before downcasting. Luckily, while
adding the `static_ptr_cast`s, only two truly incorrect usages were
found; in the other instances, our casts just needed to be made
explicit.
Before of this change, many specific classes to VirtIO were in the
Kernel namespace, which polluted it.
Everything should be more organized now, but there's still room for
improvement later.
This class member was used only to determine the device type when
printing messages to the debug log. Instead, remove this class member,
and add a quick way to find the device type according to how the VirtIO
specification says to do that.
This simplifies construction of VirtIODevices a bit, because now the
constructor doesn't need to ask for a String identified with the device
type.
Now that the old PCI::Device was removed, we can complete the PCI
changes by making the PCI::DeviceController to be named PCI::Device.
Really the entire purpose and the distinction between the two was about
interrupts, but since this is no longer a problem, just rename it to
simplify things further.
This makes for nicer handling of errors compared to checking whether a
RefPtr is null. Additionally, this will give way to return different
types of errors in the future.
...and also RangeAllocator => VirtualRangeAllocator.
This clarifies that the ranges we're dealing with are *virtual* memory
ranges and not anything else.
Now that all KResult and KResultOr are used consistently throughout the
kernel, it's no longer necessary to return negative error codes.
However, we were still doing that in some places, so let's fix all those
(bugs) by removing the minuses. :^)
This allows us to specify virtual addresses for things the kernel should
access via virtual addresses later on. By doing this we can make the
kernel independent from specific physical addresses.
It's easy to forget the responsibility of validating and safely copying
kernel parameters in code that is far away from syscalls. ioctl's are
one such example, and bugs there are just as dangerous as at the root
syscall level.
To avoid this case, utilize the AK::Userspace<T> template in the ioctl
kernel interface so that implementors have no choice but to properly
validate and copy ioctl pointer arguments.
We don't need to have a dedicated API for creating a VMObject with a
single page, the multi-page API option works in all cases.
Also make the API take a Span<NonnullRefPtr<PhysicalPage>> instead of
a NonnullRefPtrVector<PhysicalPage>.