Modify the API so it's possible to propagate error on OOM failure.
NonnullOwnPtr<T> is not appropriate for the ThreadTracer::create() API,
so switch to OwnPtr<T>, use adopt_own_if_nonnull() to handle creation.
The Acid1 test has a bit of an unusual background - the html and body
tags have different background colors. Our painting order of the DOM was
such that the body background was painted first, then all other elements
were painted in-phase according to Appendix E of CSS 2.1. So the html
element's background color was painted over the body background.
This removes the special handling of the body background from
InitialContainingBlockBox and now all boxes are painted in-phase. Doing
this also exposed that we weren't handling Section 2.11.2 of the spec;
when the html background is unset, the body's background should be
propagated to the html element.
The ListItemMarker gets its index 1-based while the
String::bijective_base_from expects its index to be 0-based. This patch
adjusts the index passed around accordingly.
Currently, when passing buffers into VirtIOQueues, we use scatter-gather
lists, which contain an internal vector of buffers. This vector is
allocated, filled and the destroy whenever we try to provide buffers
into a virtqueue, which would happen a lot in performance cricital code
(the main transport mechanism for certain paravirtualized devices).
This commit moves it over to using VirtIOQueueChains and building the
chain in place in the VirtIOQueue. Also included are a bunch of fixups
for the VirtIO Console device, making it use an internal VM::RingBuffer
instead.
We want to move this out of the AHCI subsystem into the VM system,
since other parts of the kernel may need to perform scatter-gather IO.
We rename the current VM::ScatterGatherList impl that's used in the
virtio subsystem to VM::ScatterGatherRefList, since its distinguishing
feature from the AHCI scatter-gather list is that it doesn't own its
buffers.
This untangles several concepts in the rasterizer and makes it possible
to toggle different stages on a per-block level rather than having to
check whether the feature is enabled for every pixel.
This makes the software rasterizer use integers for triangle coverage
calculations. The previously used floating point algorithm was not
precise enough in certain situations and showed gaps between triangles.
This is not yet subpixel accurate.
Unfortunately adopt_ref requires a reference, which obviously does not
work well with when attempting to harden against allocation failure.
The adopt_ref_if_nonnull() variant will allow you to avoid using bare
pointers, while still allowing you to handle allocation failure.
Unfortunately adopt_own requires a reference, which obviously does not
work well with when attempting to harden against allocation failure.
The adopt_own_if_nonnull() variant will allow you to avoid using bare
pointers, while still allowing you to handle allocation failure.
For Kernel OOM hardening to work correctly, we need to be able to
call a "nothrow" version of operator new. Unfortunately the default
"throwing" version of operator new assumes that the allocation will
never return on failure and will always throw an exception. This isn't
true in the Kernel, as we don't have exceptions. So if we call the
normal/throwing new and kmalloc returns NULL, the generated code will
happily go and dereference that NULL pointer by invoking the constructor
before we have a chance to handle the failure.
To fix this we declare operator new as noexcept in the Kernel headers,
which will allow the caller to actually handle allocation failure.
The delete implementations need to match the prototype of the new which
allocated them, so we need define delete as noexcept as well. GCC then
errors out declaring that you should implement sized delete as well, so
this change provides those stubs in order to compile cleanly.
Finally the new operator definitions have been standardized as being
declared with [[nodiscard]] to avoid potential memory leaks. So lets
declares the kernel versions that way as well.
This avoids some of the the shortest-lived allocations in the kernel:
StringImpl::create_uninitialized(unsigned long, char*&)
StringImpl::create(char const*, unsigned long, ShouldChomp)
StringBuilder::to_string() const
String::vformatted(StringView, TypeErasedFormatParams)
void Kernel::KBufferBuilder::appendff<unsigned int>(...)
JsonObjectSerializer<Kernel::KBufferBuilder>::add(..., unsigned int)
Kernel::procfs$all(Kernel::InodeIdentifier, ...) const
Kernel::procfs$all(Kernel::InodeIdentifier, Kernel::KBufferBuilder&)
This avoids allocations for initializing the Function<T>
for the NetworkAdapter::for_each callback argument.
Applying this patch decreases CPU utilization for NetworkTask
from 40% to 28% when receiving TCP packets at a rate of 100Mbit/s.
We already have another limit for the total number of packet buffers
allowed (max_packet_buffers). This second limit caused us to
repeatedly allocate and then free buffers.
This patch adds some rudimentary tests for InodeWatcher. It tests the
basic functionality, but maybe there are corner cases I haven't caught.
Additionally, this is our first LibCore test. :^)
With the new InodeWatcher API, the old style of creating a watcher per
inode will no longer work. Therefore the FileWatcher API has been
updated to support multiple watches, and its users have also been
refactored to the new style. At the moment, all operations done on a
(Blocking)FileWatcher return Result objects, however, this may be
changed in the future if it becomes too obnoxious. :^)
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
This patch modifies InodeWatcher to switch to a one watcher, multiple
watches architecture. The following changes have been made:
- The watch_file syscall is removed, and in its place the
create_iwatcher, iwatcher_add_watch and iwatcher_remove_watch calls
have been added.
- InodeWatcher now holds multiple WatchDescriptions for each file that
is being watched.
- The InodeWatcher file descriptor can be read from to receive events on
all watched files.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
This patch adds two new methods to LexicalPath. LexicalPath::append
appends a new path component to a LexicalPath, and LexicalPath::join
constructs a new LexicalPath from one or more components.
Co-authored-by: Gunnar Beutner <gunnar@beutner.name>
If the HPET main counter does not support full 64 bits, we should
not expect the upper 32 bit to work. This is a problem when writing
to the upper 32 bit of the comparator value, which requires the
TimerConfiguration::ValueSet bit to be set, but if it's not 64 bit
capable then the bit will not be cleared and leave it in a bad state.
Fixes#6990
The logic that figures out which (if any) action should be activated
by a keydown event was getting a bit unwieldy. This patch moves it to
a separate helper function.
Not sure why some menus did have one and others didn't, even in the
same application - now they all do. :^)
I added character shortcuts to some menu actions as well.
Seeing " - Browser" for loading pages is annoying, so let's do something
more sensible instead for empty tab document titles: "<URL> - Browser".
Also consolidate the two places where this code is used into a lambda to
make any future changes easier.
This matches what other operating systems like Linux do:
$ ip route get 0.0.0.0
local 0.0.0.0 dev lo src 127.0.0.1 uid 1000
cache <local>
$ ssh 0.0.0.0
gunnar@0.0.0.0's password:
$ ss -na | grep :22 | grep ESTAB
tcp ESTAB 0 0 127.0.0.1:43118 127.0.0.1:22
tcp ESTAB 0 0 127.0.0.1:22 127.0.0.1:43118