When doing the cast to u64 on the page directory physical address,
the sign bit was being extended. This only beomes an issue when
crossing the 2 GiB boundary. At >= 2 GiB, the physical address
has the sign bit set. For example, 0x80000000.
This set all the reserved bits in the PDPTE, causing a GPF
when loading the PDPT pointer into CR3. The reserved bits are
presumably there to stop you writing out a physical address that
the CPU physically cannot handle, as the size of the reserved bits
is determined by the physical address width of the CPU.
This fixes this by casting to FlatPtr instead. I believe the sign
extension only happens when casting to a bigger type. I'm also using
FlatPtr because it's a pointer we're writing into the PDPTE.
sizeof(FlatPtr) will always be the same size as sizeof(void*).
This also now asserts that the physical address in the PDPTE is
within the max physical address the CPU supports. This is better
than getting a GPF, because CPU::handle_crash tries to do the same
operation that caused the GPF in the first place. That would cause
an infinite loop of GPFs until the stack was exhausted, causing a
triple fault.
As far as I know and tested, I believe we can now use the full 32-bit
physical range without crashing.
Fixes#4584. See that issue for the full debugging story.
This is a new NotesEntry type which will allow applications to embed
arbitrary metadata in crashdumps (stored as a JSON string). It will be
used to store an assertion message, for example.
This is a new NotesEntry type which contains information related to the
coredump's process:
- PID
- executable path
Having these in the coredump explicitly avoids having to parse them from
the coredump filename and backtrace, respectively.
This patchset makes ProtocolServer stream the downloads to its client
(LibProtocol), and as such changes the download API; a possible
download lifecycle could be as such:
notation = client->server:'>', server->client:'<', pipe activity:'*'
```
> StartDownload(GET, url, headers, {})
< Response(0, fd 8)
* {data, 1024b}
< HeadersBecameAvailable(0, response_headers, 200)
< DownloadProgress(0, 4K, 1024)
* {data, 1024b}
* {data, 1024b}
< DownloadProgress(0, 4K, 2048)
* {data, 1024b}
< DownloadProgress(0, 4K, 1024)
< DownloadFinished(0, true, 4K)
```
Since managing the received file descriptor is a pain, LibProtocol
implements `Download::stream_into(OutputStream)`, which can be used to
stream the download into any given output stream (be it a file, or
memory, or writing stuff with a delay, etc.).
Also, as some of the users of this API require all the downloaded data
upfront, LibProtocol also implements `set_should_buffer_all_input()`,
which causes the download instance to buffer all the data until the
download is complete, and to call the `on_buffered_download_finish`
hook.
Add requires clauses to constraints on InputStream and OutputStream
operator<< / operator>>. Make the constraint on String::number a
requires clause instead of SFINAE. Also, fix some unecessary IsSame in
Trie where specialized traits exist for the given use cases.
The unblock_all variant used to ASSERT if a blocker didn't unblock,
but it wasn't clear from the name that it would do that. Because
the BlockCondition already asserts that no blockers are left at
destruction time, it would still catch blockers that haven't been
unblocked for whatever reason.
Fixes#4496
This app allows the user to easily adjust his mouse's acceleration
as well as the scrollwheel's global scroll length.
The mouse acceleration changes would not be noticeable in qemu as
by default serenity uses VMWareBackdoor when available which lets
the host handle mouse movement instead of the guest (Serenity),
so in order to test this on a none-baremetal pc the VMWareBackdoor
has to be disabled.
Use SFINAE to enforce the fact that it's supposed to only be called for
Arithmetic types, rather than counting on the linker to tell us that an
instantiation of String::number(my_arg) was not found. This also adds
String::number for floating point types as a side-effect.
Use TypeLists to add test for IsIntegral, IsFloatingPoint, IsVoid,
IsNullPointer, IsArithmetic, IsFundamental, and AddConst type traits.
More can "easily" be added once the TypeList and macro magic is squinted
at for long enough :).
Also add IndexSequence and associated helpers. The TypeList class can be
queried for what type is at a certain index, and there are two helper
functions: for_each_type, and for_each_type_zipped.
for_each_type will invoke a lambda with a TypeWrapper object for
each type in the type list. The original type can be obtained by
extracting the ::Type from the type of your generic lambda's one
argument.
for_each_type_zipped will walk two TypeLists in lockstep and pass a
TypeWrapper object for the current index in each list to a generic
lambda. The original type from the TypeList can again be extracted via
the ::Type of the generic lambda's two parameters.