There's no need to leave the cell dirty when not updating it, and
there's definitely no need to update the cells as we're selecting them.
This makes navigating a sheet and selecting cells significantly faster
as we no longer update unrelated cells just because they appear to have
a cyclic update dependency :^)
...and don't let them leak out of their evaluation contexts.
Also keep the exceptions separate from the actual values.
This greatly reduces the number of assertions hit while entering random
data into a sheet.
Hide private members, and make the odd update() -> sheet->update(cell)
-> update(Badge<Sheet>) -> update_data() less odd by removing the
update(Badge<Sheet>) step.
LibC stdlib `arc4random()` uses the `getrandom` system call which
uses `KernelRng::get_good_random_bytes`.
This ensures that filenames generated using functions such as
`mkstemp()` are suitably randomised and are no longer predictable.
Problem:
- Modifying CXXFLAGS directly is an old CMake style.
- The giant and ever-growing list of `*_DEBUG` macros clutters the
top-level CMakeLists.txt.
Solution:
- Use the more current `add_compile_definitions` function.
- Sort all the debug options so that they are easy to view.
- Move the `*_DEBUG` macros to their own file which can be included
directly.
It was possible to overwrite the entire EFLAGS register since we didn't
do any masking in the ptrace and sigreturn syscalls.
This made it trivial to gain IO privileges by raising IOPL to 3 and
then you could talk to hardware to do all kinds of nasty things.
Thanks to @allesctf for finding these issues! :^)
Their exploit/write-up: https://github.com/allesctf/writeups/blob/master/2020/hxpctf/wisdom2/writeup.md
Since they're all covered by the same spec sheet, we can expect
the same code to cover most of the devices.
It can't currently differentiate between them, which would be nice to
add for determining what registers we can access.
And make an effort to propagate errors out from the inner parts.
This fixes an issue where the kernel would infinitely loop in coredump
generation if the TmpFS filled up.
It was possible to go outside the interlacing row strid/offset arrays.
Just fail the decode if this is about to happen. I've added a FIXME
about rejecting such images earlier, since it's a bit sad to only do
this once we realize the pass index is about to overflow.
Found by oss-fuzz: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=28239
When enumerating the hardware using MMIO mode, it would attempt to
create a physical ID first. To create a physical ID, it needs to
retrieve the capabilities of the device.
When enumerating the first device, there would be no device
configuration space mappings. Access::get_capabilities_pointer
calls PCI::read16, which in turn goes to MMIOAccess::read16_field.
MMIOAccess::read16_field attempts to get a device configuration space
and fully expects to get one. However, since this is the first device,
there are none and it crashes with an m_has_value assertion failure.
This fixes this by creating the device configuration space mapping
before creating the physical ID.
Testing with VMware Player 16.1.0.
Problem:
- Functions are duplicated in [PBM,PGM,PPM]Loader class
implementations. They are functionally equivalent. This does not
follow the DRY (Don't Repeat Yourself) principle.
Solution:
- Factor out the common functions into a separate file.
- Refactor common code to generic functions.
- Change `PPM_DEBUG` macro to be `PORTABLE_IMAGE_LOADER_DEBUG` to work
with all the supported types. This requires adding the image type to
the debug log messages for easier debugging.
Problem:
- Appending to CMAKE_CXX_FLAGS for everything is cumbersome.
Solution:
- Use the `add_compile_options` built-in function to handle adding
compiler options (and even de-duplicating).
Problem:
- Setting `CMAKE_CXX_FLAGS` directly to effect the version of the C++
standard being used is no longer the recommended best practice.
Solution:
- Set C++20 mode in the compiler by setting `CMAKE_CXX_STANDARD`.
- Force the build system generator not to fallback to the latest
standard supported by the compiler by enabling
`CMAKE_CXX_STANDARD_REQUIRED`. This shouldn't ever be a problem
though since the toolchain is tightly controlled.
- Disable GNU compiler extensions by disabling `CMAKE_CXX_EXTENSIONS`
to preserve the previous flags.
This implements a number of changes related to time:
* If a HPET is present, it is now used only as a system timer, unless
the Local APIC timer is used (in which case the HPET timer will not
trigger any interrupts at all).
* If a HPET is present, the current time can now be as accurate as the
chip can be, independently from the system timer. We now query the
HPET main counter for the current time in CPU #0's system timer
interrupt, and use that as a base line. If a high precision time is
queried, that base line is used in combination with quering the HPET
timer directly, which should give a much more accurate time stamp at
the expense of more overhead. For faster time stamps, the more coarse
value based on the last interrupt will be returned. This also means
that any missed interrupts should not cause the time to drift.
* The default system interrupt rate is reduced to about 250 per second.
* Fix calculation of Thread CPU usage by using the amount of ticks they
used rather than the number of times a context switch happened.
* Implement CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE and use it
for most cases where precise timestamps are not needed.
Problem:
- `Streamer` is the same in [PBM,PGM,PPM]Loader class implementations.
Solution:
- Extract it to its own header file to reduce maintenance burden.
- Implement `read` in terms of `read_bytes` to make the class "DRY".
- Decorate all functions with `constexpr`.
This is a very WIP port bringing stress-ng to SerenityOS.
stress-ng is great at doing multi-workload stress testing, this allows it to
find unique and interesting intermixed pairs of stressful operations which cause bugs.
This initial port just rips out an non applicable functionality in order to get
the port to compile.
The StorageManagement class has 2 roles:
1. During boot, it should find all storage controllers in the machine,
and then determine what is the boot device.
2. Later on boot, it is a registrar of all storage controllers and
storage devices. Thus, it could be used to show information about these
devices when implemented.
This change allows the user to specify a boot driver other than /dev/hda
and if it's connected in the machine - it will boot.
Previously, the indexing scheme was that 0 is Primary-Master, 1 is
Primary-Slave, 2 is Secondary-Master, 3 is Secondary-Slave.
Instead of merely matching between numbers to the channel & position,
the IDEController code will try to find all available drives connected to
the two channels, then it will create a Vector with nonnull RefPtr to
them. Then we take use the given index with this Vector.
This new subsystem is somewhat replacing the IDE disk code we had with a
new flexible design.
StorageDevice is a generic class that represent a generic storage
device. It is meant that specific storage hardware will override the
interface. StorageController is a generic class that represent
a storage controller that can be found in a machine.
The IDEController class governs two IDEChannels. An IDEChannel is
responsible to manage the master & slave devices of the channel,
therefore an IDEChannel is an IRQHandler.
IRQ 7 and 15 on the PIC architecture are used for spurious interrupts.
IRQ 7 could also be used for LPT connection, and IRQ 15 can be used for
the secondary IDE channel. Therefore, we need to allow to install a
real IRQ handler and check if a real IRQ was asserted. If so, we handle
them in the usual way.
A note on this fix - unregistering or registering a new IRQ handler
after we already registered one in the spurious interrupt handler is
not supported yet.
Such device is not an IRQHandler by itself, but actually a controller of
many IRQ or MSI devices. The purpose of this class is to manage multiple
sources of interrupts.
For example, a generic ISA IDE controller controls 2 IRQ sources - 14
and 15. So, when we initialize the IDE controller, it will initialize
two IDE channels (also known as PATAChannels) to utilize IRQ 14 and 15,
respectively. NVMe with MSI-X support can theoretically handle up to
2048 interrupts.