In the future all (normal) output should be written by any of the
following functions:
out (currently called new_out)
outln
dbg (currently called new_dbg)
dbgln
warn (currently called new_warn)
warnln
However, there are still a ton of uses of the old out/warn/dbg in the
code base so the new functions are called new_out/new_warn/new_dbg. I am
going to rename them as soon as all the other usages are gone (this
might take a while.)
I also added raw_out/raw_dbg/raw_warn which don't do any escaping,
this should be useful if no formatting is required and if the input
contains tons of curly braces. (I am not entirely sure if this function
will stay, but I am adding it for now.)
Don't require clients to templatize modrm().read{8,16,32,64}() with
the ValueWithShadow type when we can figure it out automatically.
The main complication here is that ValueWithShadow is a UE concept
while the MemoryOrRegisterReference inlines exist at the lower LibX86
layer and so doesn't have direct access to those types. But that's
nothing we can't solve with some simple template trickery. :^)
m_cached_code_end points at the first invalid byte, so we need to
update the cache if the last byte we want to read points at the
end or past it. Previously we updated the cache 1 byte prematurely in
read16, read32, read64 (but not in read8).
Noticed by reading the code (the code looked different from read8() and
the other 3). I didn't find anything that actually hit this case.
This is useful for reading and writing doubles for #3329.
It is also useful for emulating 64-bit binaries.
MemoryOrRegisterReference assumes that 64-bit values are always
memory references since that's enough for fpu support. If we
ever want to emulate 64-bit binaries, that part will need minor
updating.
The kernel doesn't support msg_iovlens != 1 yet and nothing passes
an amount != 1, but if anyone ever adds support for this they won't
have to worry about ue at least.
When SO_TIMESTAMP is set as an option on a SOCK_DGRAM socket, then
recvmsg() will return a SCM_TIMESTAMP control message that
contains a struct timeval with the system time that was current
when the socket was received.
The implementation only supports a single iovec for now.
Some might say having more than one iovec is the main point of
recvmsg() and sendmsg(), but I'm interested in the control message
bits.
* Pass the correct source address for copying tine addr_length.
Previously, this was broken when addr_length was non-nullptr.
* Copy min(sizeof(address), address_length) bytes into address,
instead of sizeof(address), which might be larger than the
user buffer.
* Use sockaddr_storage instead of sockaddr_un. In practice they're
both the same size, but this is what sockaddr_storage is for.
With this (in particular, the first fix), `ue /bin/ntpquery`
actually gets past the recvfrom() call :^)
With this, `ue /bin/ntpquery` can be used to test sendto() and
recvfrom() in ue. (It eventually hits an unimplemented FILD_RM64,
but not before doing emulated network i/o and printing response
details.)
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
From a layering perspective, it's maybe a bit surprising that the
X86::SymbolProvider implementation also lives in LibX86, but since
everything depends on LibELF via LibC, and since all current
LibX86-based disassemblers want to use ELFSymbolProvider, it makes
some amount of sense to put it there.
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".
Let's use the correct name, at least in code.
Only changes the name of the constants, no other behavior change.
This is racy in userspace and non-racy in kernelspace so let's keep
it in kernelspace.
The behavior change where CLOEXEC is preserved when dup2() is called
with (old_fd == new_fd) was good though, let's keep that.
This enables a nice warning in case a function becomes dead code. Also, in case
of signal_trampoline_dummy, marking it external (non-static) prevents it from
being 'optimized away', which would lead to surprising and weird linker errors.
When compiling with "-Os", GCC produces the following pattern for
atomic decrement (which is used by our RefCounted template):
or eax, -1
lock xadd [destination], eax
Since or-ing with -1 will always produce the same output (-1), we can
mark the result of these operations as initialized. This stops us from
complaining about false positives when running the shell in UE. :^)
The emulator will now register signal handlers for all possible signals
and act as a translation layer between the kernel and the emulated
process.
To get an accurate simulation of signal handling, we duplicate the same
trampoline mechanism used by the kernel's signal delivery system, and
also use the "sigreturn" syscall to return from a signal handler.
Signal masking is not fully implemented yet, but this is pretty cool!