I just ran through successfully building and running SerenityOS under macOS. I ran into two main things that I struggled with, which were - properly enabling osxfuse (through System Preferences) - running the suggested command about compiler versions in such a way that would be compatible with Ninja (as it turns out, I just needed to add `-G Ninja` to the command) This commit clarifies those things for anyone who may follow
7.6 KiB
SerenityOS build instructions
Prerequisites
Linux prerequisites
Make sure you have all the dependencies installed (ninja
is optional, but is faster in practice):
Debian / Ubuntu
sudo apt install build-essential cmake curl libmpfr-dev libmpc-dev libgmp-dev e2fsprogs ninja-build qemu-system-i386 qemu-utils
Fedora
sudo dnf install curl cmake mpfr-devel libmpc-devel gmp-devel e2fsprogs ninja-build patch @"C Development Tools and Libraries" @Virtualization
openSUSE
sudo zypper install curl cmake mpfr-devel mpc-devel ninja gmp-devel e2fsprogs patch qemu-x86 qemu-audio-pa gcc gcc-c++ patterns-devel-C-C++-devel_C_C++
Arch Linux / Manjaro
sudo pacman -S --needed base-devel cmake curl mpfr libmpc gmp e2fsprogs ninja qemu qemu-arch-extra
ALT Linux
apt-get install curl cmake libmpc-devel gmp-devel e2fsprogs libmpfr-devel ninja-build patch gcc
Ensure your gcc version is >= 10 with gcc --version
. Otherwise, install it.
On Ubuntu it's in the repositories of 20.04 (Focal) and later - add the ubuntu-toolchain-r/test
PPA if you're running an older version:
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
On Debian you can use the Debian testing branch:
sudo echo "deb http://http.us.debian.org/debian/ testing non-free contrib main" >> /etc/apt/sources.list
sudo apt update
Now on Ubuntu or Debian you can install gcc-10 with apt like this:
sudo apt install gcc-10 g++-10
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 900 --slave /usr/bin/g++ g++ /usr/bin/g++-10
If you don't want to stay on the testing branch you can switch back by running:
sudo sed -i '$d' /etc/apt/sources.list
sudo apt update
Ensure your CMake version is >= 3.16 with cmake --version
. If your system doesn't provide a suitable version of CMake, you can download a binary release from the CMake website.
NixOS
You can use a nix-shell
script like the following to set up the correct environment:
myshell.nix:
with import <nixpkgs> {};
stdenv.mkDerivation {
name = "cpp-env";
nativeBuildInputs = [
gcc10
curl
cmake
mpfr
ninja
gmp
libmpc
e2fsprogs
patch
# Example Build-time Additional Dependencies
pkgconfig
];
buildInputs = [
# Example Run-time Additional Dependencies
openssl
x11
# glibc
];
hardeningDisable = [ "format" "fortify" ];
}
Then use this script: nix-shell myshell.nix
.
Once you're in nix-shell, you should be able to follow the build directions.
macOS prerequisites
Make sure you have all the dependencies installed:
brew install coreutils qemu e2fsprogs m4 autoconf libtool automake bash gcc@10 ninja
brew install --cask osxfuse
Toolchain/BuildFuseExt2.sh
Notes:
- fuse-ext2 is not available as brew formula so it must be installed using
BuildFuseExt2.sh
- Xcode and
xcode-tools
must be installed (git
is required by some scripts) - coreutils is needed to build gcc cross compiler
- qemu is needed to run the compiled OS image. You can also build it using the
BuildQemu.sh
script - osxfuse, e2fsprogs, m4, autoconf, automake, libtool and
BuildFuseExt2.sh
are needed if you want to build the root filesystem disk image natively on macOS. This allows mounting an EXT2 fs and also installs commands likemke2fs
that are not available on stock macOS. - Installing osxfuse for the first time requires enabling its system extension in System Preferences and then restarting your machine. The output from installing osxfuse with brew says this, but it's easy to miss.
- bash is needed because the default version installed on macOS doesn't support globstar
- If you install some commercial EXT2 macOS fs handler instead of osxfuse and fuse-ext2, you will need to
brew install e2fsprogs
to obtainmke2fs
anyway. - As of 2020-08-06, you might need to tell the build system about your newer host compiler. Once you've built the toolchain, navigate to
Build/
,rm -rf *
, then runcmake .. -G Ninja -DCMAKE_C_COMPILER=gcc-10 -DCMAKE_CXX_COMPILER=g++-10
, then continue withninja install
as usual.
OpenBSD prerequisites
$ pkg_add bash gcc git gmake gmp ninja sudo
FreeBSD prerequisites
$ pkg add bash coreutils git gmake ninja sudo
Windows
For Windows, you will require Windows Subsystem for Linux 2 (WSL2). Follow the WSL2 instructions here.
Do note the Hardware acceleration
and Note on filesystems
sections, otherwise performance will be terrible.
Once you have installed a distro for WSL2, follow the Linux prerequisites above for the distro you installed, then continue as normal.
You may also want to install ninja
Build
Go into the Toolchain/
directory and run the BuildIt.sh script:
$ cd Toolchain
$ ./BuildIt.sh
Building the toolchain will also automatically create a Build/
directory for the build to live in.
Once the toolchain has been built, go into the Build/
directory and run the commands. Note that while ninja
seems to be faster, you can also just use GNU make, by omitting -G Ninja
and calling make
instead of ninja
:
$ cd ..
$ cd Build
$ cmake .. -G Ninja
$ ninja
$ ninja install
This will compile all of SerenityOS and install the built files into Root/
inside the build tree. ninja install
actually pulls in the regular ninja
(ninja all
) automatically, so there isn't really a need to run it explicitly. ninja
will automatically build as many jobs in parallel as it detects processors; make
builds only one job in parallel. (Use the -j
option with an argument if you want to change this.)
Now to build a disk image, run ninja image
, and take it for a spin by using ninja run
.
$ ninja image
$ ninja run
Note that the anon
user is able to become root
without password by default, as a development convenience.
To prevent this, remove anon
from the wheel
group and he will no longer be able to run /bin/su
.
On Linux, QEMU is significantly faster if it's able to use KVM. The run script will automatically enable KVM if /dev/kvm
exists and is readable+writable by the current user.
Bare curious users may even consider sourcing suitable hardware to install Serenity on a physical PC.
Outside of QEMU, Serenity will run on VirtualBox. If you're curious, see how to install Serenity on VirtualBox.
Later on, when you git pull
to get the latest changes, there's (usually) no need to rebuild the toolchain. You can simply run ninja install
, ninja image
, and ninja run
again. CMake will only rebuild those parts that have been updated.
Ports
To add a package from the ports collection to Serenity, for example curl, go into Ports/curl/
and run ./package.sh. The sourcecode for the package will be downloaded and the package will be built. After that, run make image from the Build/
directory to update the disk image. The next time you start Serenity with make run, curl
will be available.
Keymap
Create a file with the exact name sync-local.sh
in the project root (the same directory as .clang-format
), with content like this:
#!/bin/sh
set -e
cat << 'EOF' >> mnt/etc/SystemServer.ini
[keymap]
Executable=/bin/keymap
Arguments=de
User=anon
EOF
This will configure your keymap to German (de
) instead of US English. See Base/res/keymaps/
for a full list.