serenity/Kernel/Thread.cpp
Andreas Kling c5c4e54a67 Kernel: Process destruction should destroy all child threads.
We were only destroying the main thread when a process died, leaving any
secondary threads around. They couldn't run, but because they were still
in the global thread list, strange things could happen since they had some
now-stale pointers to their old process.
2019-04-23 22:17:01 +02:00

534 lines
16 KiB
C++

#include <Kernel/Thread.h>
#include <Kernel/Scheduler.h>
#include <Kernel/Process.h>
#include <Kernel/VM/MemoryManager.h>
#include <LibC/signal_numbers.h>
InlineLinkedList<Thread>* g_threads;
static const dword default_kernel_stack_size = 16384;
static const dword default_userspace_stack_size = 65536;
Thread::Thread(Process& process)
: m_process(process)
, m_tid(process.m_next_tid++)
{
dbgprintf("Thread{%p}: New thread TID=%u in %s(%u)\n", this, m_tid, process.name().characters(), process.pid());
set_default_signal_dispositions();
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
memset(&m_tss, 0, sizeof(m_tss));
// Only IF is set when a process boots.
m_tss.eflags = 0x0202;
word cs, ds, ss;
if (m_process.is_ring0()) {
cs = 0x08;
ds = 0x10;
ss = 0x10;
} else {
cs = 0x1b;
ds = 0x23;
ss = 0x23;
}
m_tss.ds = ds;
m_tss.es = ds;
m_tss.fs = ds;
m_tss.gs = ds;
m_tss.ss = ss;
m_tss.cs = cs;
m_tss.cr3 = m_process.page_directory().cr3();
if (m_process.is_ring0()) {
// FIXME: This memory is leaked.
// But uh, there's also no kernel process termination, so I guess it's not technically leaked...
dword stack_bottom = (dword)kmalloc_eternal(default_kernel_stack_size);
m_tss.esp = (stack_bottom + default_kernel_stack_size) & 0xffffff8;
} else {
// Ring3 processes need a separate stack for Ring0.
m_kernel_stack = kmalloc(default_kernel_stack_size);
m_tss.ss0 = 0x10;
m_tss.esp0 = ((dword)m_kernel_stack + default_kernel_stack_size) & 0xffffff8;
}
// HACK: Ring2 SS in the TSS is the current PID.
m_tss.ss2 = m_process.pid();
m_far_ptr.offset = 0x98765432;
if (m_process.pid() != 0) {
InterruptDisabler disabler;
g_threads->prepend(this);
}
}
Thread::~Thread()
{
dbgprintf("~Thread{%p}\n", this);
kfree_aligned(m_fpu_state);
{
InterruptDisabler disabler;
g_threads->remove(this);
}
if (g_last_fpu_thread == this)
g_last_fpu_thread = nullptr;
if (selector())
gdt_free_entry(selector());
if (m_kernel_stack) {
kfree(m_kernel_stack);
m_kernel_stack = nullptr;
}
if (m_kernel_stack_for_signal_handler) {
kfree(m_kernel_stack_for_signal_handler);
m_kernel_stack_for_signal_handler = nullptr;
}
}
void Thread::unblock()
{
if (current == this) {
m_state = Thread::Running;
return;
}
ASSERT(m_state != Thread::Runnable && m_state != Thread::Running);
m_state = Thread::Runnable;
}
void Thread::snooze_until(Alarm& alarm)
{
m_snoozing_alarm = &alarm;
block(Thread::BlockedSnoozing);
Scheduler::yield();
}
void Thread::block(Thread::State new_state)
{
bool did_unlock = process().big_lock().unlock_if_locked();
if (state() != Thread::Running) {
kprintf("Thread::block: %s(%u) block(%u/%s) with state=%u/%s\n", process().name().characters(), process().pid(), new_state, to_string(new_state), state(), to_string(state()));
}
ASSERT(state() == Thread::Running);
m_was_interrupted_while_blocked = false;
set_state(new_state);
Scheduler::yield();
if (did_unlock)
process().big_lock().lock();
}
void Thread::sleep(dword ticks)
{
ASSERT(state() == Thread::Running);
current->set_wakeup_time(g_uptime + ticks);
current->block(Thread::BlockedSleep);
}
const char* to_string(Thread::State state)
{
switch (state) {
case Thread::Invalid: return "Invalid";
case Thread::Runnable: return "Runnable";
case Thread::Running: return "Running";
case Thread::Dying: return "Dying";
case Thread::Dead: return "Dead";
case Thread::Stopped: return "Stopped";
case Thread::Skip1SchedulerPass: return "Skip1";
case Thread::Skip0SchedulerPasses: return "Skip0";
case Thread::BlockedSleep: return "Sleep";
case Thread::BlockedWait: return "Wait";
case Thread::BlockedRead: return "Read";
case Thread::BlockedWrite: return "Write";
case Thread::BlockedSignal: return "Signal";
case Thread::BlockedSelect: return "Select";
case Thread::BlockedLurking: return "Lurking";
case Thread::BlockedConnect: return "Connect";
case Thread::BlockedReceive: return "Receive";
case Thread::BlockedSnoozing: return "Snoozing";
}
kprintf("to_string(Thread::State): Invalid state: %u\n", state);
ASSERT_NOT_REACHED();
return nullptr;
}
void Thread::finalize()
{
dbgprintf("Finalizing Thread %u in %s(%u)\n", tid(), m_process.name().characters(), pid());
m_blocked_socket = nullptr;
set_state(Thread::State::Dead);
if (this == &m_process.main_thread())
m_process.finalize();
}
void Thread::finalize_dying_threads()
{
Vector<Thread*, 32> dying_threads;
{
InterruptDisabler disabler;
for_each_in_state(Thread::State::Dying, [&] (Thread& thread) {
dying_threads.append(&thread);
});
}
for (auto* thread : dying_threads)
thread->finalize();
}
bool Thread::tick()
{
++m_ticks;
if (tss().cs & 3)
++m_process.m_ticks_in_user;
else
++m_process.m_ticks_in_kernel;
return --m_ticks_left;
}
void Thread::send_signal(byte signal, Process* sender)
{
ASSERT(signal < 32);
if (sender)
dbgprintf("signal: %s(%u) sent %d to %s(%u)\n", sender->name().characters(), sender->pid(), signal, process().name().characters(), pid());
else
dbgprintf("signal: kernel sent %d to %s(%u)\n", signal, process().name().characters(), pid());
InterruptDisabler disabler;
m_pending_signals |= 1 << signal;
}
bool Thread::has_unmasked_pending_signals() const
{
return m_pending_signals & ~m_signal_mask;
}
ShouldUnblockThread Thread::dispatch_one_pending_signal()
{
ASSERT_INTERRUPTS_DISABLED();
dword signal_candidates = m_pending_signals & ~m_signal_mask;
ASSERT(signal_candidates);
byte signal = 0;
for (; signal < 32; ++signal) {
if (signal_candidates & (1 << signal)) {
break;
}
}
return dispatch_signal(signal);
}
enum class DefaultSignalAction {
Terminate,
Ignore,
DumpCore,
Stop,
Continue,
};
DefaultSignalAction default_signal_action(byte signal)
{
ASSERT(signal && signal < NSIG);
switch (signal) {
case SIGHUP:
case SIGINT:
case SIGKILL:
case SIGPIPE:
case SIGALRM:
case SIGUSR1:
case SIGUSR2:
case SIGVTALRM:
case SIGSTKFLT:
case SIGIO:
case SIGPROF:
case SIGTERM:
case SIGPWR:
return DefaultSignalAction::Terminate;
case SIGCHLD:
case SIGURG:
case SIGWINCH:
return DefaultSignalAction::Ignore;
case SIGQUIT:
case SIGILL:
case SIGTRAP:
case SIGABRT:
case SIGBUS:
case SIGFPE:
case SIGSEGV:
case SIGXCPU:
case SIGXFSZ:
case SIGSYS:
return DefaultSignalAction::DumpCore;
case SIGCONT:
return DefaultSignalAction::Continue;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
return DefaultSignalAction::Stop;
}
ASSERT_NOT_REACHED();
}
ShouldUnblockThread Thread::dispatch_signal(byte signal)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(signal < 32);
#ifdef SIGNAL_DEBUG
kprintf("dispatch_signal %s(%u) <- %u\n", name().characters(), pid(), signal);
#endif
auto& action = m_signal_action_data[signal];
// FIXME: Implement SA_SIGINFO signal handlers.
ASSERT(!(action.flags & SA_SIGINFO));
// Mark this signal as handled.
m_pending_signals &= ~(1 << signal);
if (signal == SIGSTOP) {
set_state(Stopped);
return ShouldUnblockThread::No;
}
if (signal == SIGCONT && state() == Stopped)
set_state(Runnable);
auto handler_laddr = action.handler_or_sigaction;
if (handler_laddr.is_null()) {
switch (default_signal_action(signal)) {
case DefaultSignalAction::Stop:
set_state(Stopped);
return ShouldUnblockThread::No;
case DefaultSignalAction::DumpCore:
case DefaultSignalAction::Terminate:
m_process.terminate_due_to_signal(signal);
return ShouldUnblockThread::No;
case DefaultSignalAction::Ignore:
return ShouldUnblockThread::No;
case DefaultSignalAction::Continue:
return ShouldUnblockThread::Yes;
}
ASSERT_NOT_REACHED();
}
if (handler_laddr.as_ptr() == SIG_IGN) {
#ifdef SIGNAL_DEBUG
kprintf("%s(%u) ignored signal %u\n", name().characters(), pid(), signal);
#endif
return ShouldUnblockThread::Yes;
}
dword old_signal_mask = m_signal_mask;
dword new_signal_mask = action.mask;
if (action.flags & SA_NODEFER)
new_signal_mask &= ~(1 << signal);
else
new_signal_mask |= 1 << signal;
m_signal_mask |= new_signal_mask;
Scheduler::prepare_to_modify_tss(*this);
word ret_cs = m_tss.cs;
dword ret_eip = m_tss.eip;
dword ret_eflags = m_tss.eflags;
bool interrupting_in_kernel = (ret_cs & 3) == 0;
ProcessPagingScope paging_scope(m_process);
m_process.create_signal_trampolines_if_needed();
if (interrupting_in_kernel) {
#ifdef SIGNAL_DEBUG
kprintf("dispatch_signal to %s(%u) in state=%s with return to %w:%x\n", name().characters(), pid(), to_string(state()), ret_cs, ret_eip);
#endif
ASSERT(is_blocked());
m_tss_to_resume_kernel = make<TSS32>(m_tss);
#ifdef SIGNAL_DEBUG
kprintf("resume tss pc: %w:%x stack: %w:%x flags: %x cr3: %x\n", m_tss_to_resume_kernel.cs, m_tss_to_resume_kernel->eip, m_tss_to_resume_kernel->ss, m_tss_to_resume_kernel->esp, m_tss_to_resume_kernel->eflags, m_tss_to_resume_kernel->cr3);
#endif
if (!m_signal_stack_user_region) {
m_signal_stack_user_region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "Signal stack (user)");
ASSERT(m_signal_stack_user_region);
}
if (!m_kernel_stack_for_signal_handler) {
m_kernel_stack_for_signal_handler = kmalloc(default_kernel_stack_size);
ASSERT(m_kernel_stack_for_signal_handler);
}
m_tss.ss = 0x23;
m_tss.esp = m_signal_stack_user_region->laddr().offset(default_userspace_stack_size).get();
m_tss.ss0 = 0x10;
m_tss.esp0 = (dword)m_kernel_stack_for_signal_handler + default_kernel_stack_size;
push_value_on_stack(0);
} else {
push_value_on_stack(ret_eip);
push_value_on_stack(ret_eflags);
// PUSHA
dword old_esp = m_tss.esp;
push_value_on_stack(m_tss.eax);
push_value_on_stack(m_tss.ecx);
push_value_on_stack(m_tss.edx);
push_value_on_stack(m_tss.ebx);
push_value_on_stack(old_esp);
push_value_on_stack(m_tss.ebp);
push_value_on_stack(m_tss.esi);
push_value_on_stack(m_tss.edi);
// Align the stack.
m_tss.esp -= 12;
}
// PUSH old_signal_mask
push_value_on_stack(old_signal_mask);
m_tss.cs = 0x1b;
m_tss.ds = 0x23;
m_tss.es = 0x23;
m_tss.fs = 0x23;
m_tss.gs = 0x23;
m_tss.eip = handler_laddr.get();
// FIXME: Should we worry about the stack being 16 byte aligned when entering a signal handler?
push_value_on_stack(signal);
if (interrupting_in_kernel)
push_value_on_stack(m_process.m_return_to_ring0_from_signal_trampoline.get());
else
push_value_on_stack(m_process.m_return_to_ring3_from_signal_trampoline.get());
ASSERT((m_tss.esp % 16) == 0);
// FIXME: This state is such a hack. It avoids trouble if 'current' is the process receiving a signal.
set_state(Skip1SchedulerPass);
#ifdef SIGNAL_DEBUG
kprintf("signal: Okay, %s(%u) {%s} has been primed with signal handler %w:%x\n", name().characters(), pid(), to_string(state()), m_tss.cs, m_tss.eip);
#endif
return ShouldUnblockThread::Yes;
}
void Thread::set_default_signal_dispositions()
{
// FIXME: Set up all the right default actions. See signal(7).
memset(&m_signal_action_data, 0, sizeof(m_signal_action_data));
m_signal_action_data[SIGCHLD].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
m_signal_action_data[SIGWINCH].handler_or_sigaction = LinearAddress((dword)SIG_IGN);
}
void Thread::push_value_on_stack(dword value)
{
m_tss.esp -= 4;
dword* stack_ptr = (dword*)m_tss.esp;
*stack_ptr = value;
}
void Thread::make_userspace_stack_for_main_thread(Vector<String> arguments, Vector<String> environment)
{
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, "stack");
ASSERT(region);
m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
char* stack_base = (char*)region->laddr().get();
int argc = arguments.size();
char** argv = (char**)stack_base;
char** env = argv + arguments.size() + 1;
char* bufptr = stack_base + (sizeof(char*) * (arguments.size() + 1)) + (sizeof(char*) * (environment.size() + 1));
size_t total_blob_size = 0;
for (auto& a : arguments)
total_blob_size += a.length() + 1;
for (auto& e : environment)
total_blob_size += e.length() + 1;
size_t total_meta_size = sizeof(char*) * (arguments.size() + 1) + sizeof(char*) * (environment.size() + 1);
// FIXME: It would be better if this didn't make us panic.
ASSERT((total_blob_size + total_meta_size) < default_userspace_stack_size);
for (int i = 0; i < arguments.size(); ++i) {
argv[i] = bufptr;
memcpy(bufptr, arguments[i].characters(), arguments[i].length());
bufptr += arguments[i].length();
*(bufptr++) = '\0';
}
argv[arguments.size()] = nullptr;
for (int i = 0; i < environment.size(); ++i) {
env[i] = bufptr;
memcpy(bufptr, environment[i].characters(), environment[i].length());
bufptr += environment[i].length();
*(bufptr++) = '\0';
}
env[environment.size()] = nullptr;
// NOTE: The stack needs to be 16-byte aligned.
push_value_on_stack((dword)env);
push_value_on_stack((dword)argv);
push_value_on_stack((dword)argc);
push_value_on_stack(0);
}
void Thread::make_userspace_stack_for_secondary_thread(void *argument)
{
auto* region = m_process.allocate_region(LinearAddress(), default_userspace_stack_size, String::format("Thread %u Stack", tid()));
ASSERT(region);
m_tss.esp = region->laddr().offset(default_userspace_stack_size).get();
// NOTE: The stack needs to be 16-byte aligned.
push_value_on_stack((dword)argument);
push_value_on_stack(0);
}
Thread* Thread::clone(Process& process)
{
auto* clone = new Thread(process);
memcpy(clone->m_signal_action_data, m_signal_action_data, sizeof(m_signal_action_data));
clone->m_signal_mask = m_signal_mask;
clone->m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
memcpy(clone->m_fpu_state, m_fpu_state, sizeof(FPUState));
clone->m_has_used_fpu = m_has_used_fpu;
return clone;
}
KResult Thread::wait_for_connect(Socket& socket)
{
if (socket.is_connected())
return KSuccess;
m_blocked_socket = socket;
block(Thread::State::BlockedConnect);
Scheduler::yield();
m_blocked_socket = nullptr;
if (!socket.is_connected())
return KResult(-ECONNREFUSED);
return KSuccess;
}
void Thread::initialize()
{
g_threads = new InlineLinkedList<Thread>;
Scheduler::initialize();
}
Vector<Thread*> Thread::all_threads()
{
Vector<Thread*> threads;
InterruptDisabler disabler;
for (auto* thread = g_threads->head(); thread; thread = thread->next())
threads.append(thread);
return threads;
}
bool Thread::is_thread(void* ptr)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* thread = g_threads->head(); thread; thread = thread->next()) {
if (thread == ptr)
return true;
}
return false;
}